
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2015

A new formulation for delayed detached eddy
simulation based on the Smagorinsky LES model
Karthik Rudra Reddy
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Aerospace Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Rudra Reddy, Karthik, "A new formulation for delayed detached eddy simulation based on the Smagorinsky LES model" (2015).
Graduate Theses and Dissertations. 14505.
https://lib.dr.iastate.edu/etd/14505

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=lib.dr.iastate.edu%2Fetd%2F14505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14505?utm_source=lib.dr.iastate.edu%2Fetd%2F14505&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

A new formulation for delayed detached eddy simulation based on the

Smagorinsky LES model

by

Karthik Rudra Reddy

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Aerospace Engineering

Program of Study Committee:

Paul Durbin, Major Professor

Alric Rothmayer

Anupam Sharma

Shankar Subramaniam

James Hill

Iowa State University

Ames, Iowa

2015

Copyright c© Karthik Rudra Reddy, 2015. All rights reserved.



www.manaraa.com

ii

DEDICATION

To my parents Vijayalakshmi and Rudra Reddy,

my sister Gayathri, and my wife Rajalakshmi.



www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Motivation for hybrid RANS/LES methods . . . . . . . . . . . . . . . . 1

1.1.2 Detached eddy simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Conservation equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Turbulence model description . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Numerical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Temporal discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.3 The pressure equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPTER 2. A DDES MODEL WITH A SMAGORINSKY-TYPE EDDY

VISCOSITY FORMULATION AND LOG-LAYER MISMATCH COR-

RECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Channel flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



www.manaraa.com

iv

2.3.2 Flow over backward facing step . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.3 Flow over 2D periodic hills . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.4 Flow through an air blast atomizer . . . . . . . . . . . . . . . . . . . . . 44

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

CHAPTER 3. AN ℓ2ω FORMULATION OFDELAYED DETACHED EDDY

SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Channel flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Flow over a backward facing step . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 Flow over 2D periodic hills . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.4 Flow through an air blast atomizer . . . . . . . . . . . . . . . . . . . . . 56

3.4 Implementation of Dynamic Procedure . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Test case - flow through a 3D diffuser . . . . . . . . . . . . . . . . . . . 62

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

CHAPTER 4. ON THE DYNAMIC COMPUTATION OF THE MODEL

CONSTANT IN DELAYED DETACHED EDDY SIMULATION . . . . . 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Channel flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 Backward facing step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.3 Periodic hills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.4 3D diffuser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



www.manaraa.com

v

4.3.5 Rotating channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.6 Fundamental aero investigates the hill (FAITH) geometry . . . . . . . . 84

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

CHAPTER 5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Prospects for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

APPENDIX A. DERIVATION OF THE MEAN AND TURBULENT KI-

NETIC ENERGY EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . 95

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



www.manaraa.com

vi

LIST OF TABLES

Table 2.1 Measured mass flow rates for PIV and CFD simulations. . . . . . . . . . . . . . . . . 47

Table 3.1 Measured mass flow rates for PIV and CFD simulations. . . . . . . . . . . . . . . . . 57

Table 4.1 Grid resolution for channel flow cases with different Reynolds numbers . . . . . 74

Table 4.2 Predicted Reτ for different Ro values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



www.manaraa.com

vii

LIST OF FIGURES

Figure 1.1 Flow over a circular cylinder using SA-URANS . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.2 Flow over a circular cylinder using SA-DES. . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.3 Instantaneous vorticity magnitude using SA-URANS . . . . . . . . . . . . . . . . . . 5

Figure 1.4 Instantaneous vorticity magnitude using SA-DES . . . . . . . . . . . . . . . . . . . . . 6

Figure 1.5 Flow over a delta wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 1.6 U+ vs. y+ from DES of channel flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.1 Distribution of Cf for flat plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 2.2 Comparison of shielding function for different models . . . . . . . . . . . . . . . . . . 34

Figure 2.3 Channel flow: effect of CDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.4 Channel flow: U+ and shear stress profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 2.5 Channel flow: U+ profiles at different Reτ . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 2.6 Channel flow: vorticity contours along XZ plane . . . . . . . . . . . . . . . . . . . . . 38

Figure 2.7 Channel flow: u′
+

, v′
+

and w′
+

profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 2.8 Comparison of production and dissipation limited DDES . . . . . . . . . . . . . . . 39

Figure 2.9 Backward facing step: contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 2.10 Backward facing step: velocity profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 2.11 Backward facing step: k − ω SST based DDES . . . . . . . . . . . . . . . . . . . . . . 40

Figure 2.12 2D periodic hills: velocity profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 2.13 Atomizer: geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



www.manaraa.com

viii

Figure 2.14 Atomizer: contour of fd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 2.15 Atomizer: iso-surface of Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 2.16 Atomizer: Q contours from RANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 2.17 Atomizer: velocity contours along the axial plane . . . . . . . . . . . . . . . . . . . . 46

Figure 2.18 Atomizer: velocity contours along a radial plane . . . . . . . . . . . . . . . . . . . . . 47

Figure 2.19 Atomizer: velocity profiles along a radial plane . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.1 Channel flow: U+ and shear stress profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 3.2 Backward facing step: Iso-surface of Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.3 Backward facing step: Cf distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.4 2D periodic hills: Cf distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 3.5 Atomizer: Iso-surface of Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.6 Atomizer: velocity contours along the axial plane . . . . . . . . . . . . . . . . . . . . . 58

Figure 3.7 Atomizer: velocity contours along a radial plane . . . . . . . . . . . . . . . . . . . . . . 58

Figure 3.8 Atomizer: velocity profiles along a radial plane . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 3.9 Dynamic DDES with no check for mesh quality. . . . . . . . . . . . . . . . . . . . . . . 61

Figure 3.10 3D diffuser: velocity contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 3.11 3D diffuser: velocity profiles from DDES . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 3.12 3D diffuser: velocity profiles from dynamic DDES . . . . . . . . . . . . . . . . . . . . 64

Figure 4.1 Dynamic DDES on a coarse grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 4.2 Dynamic DDES with no check for mesh quality. . . . . . . . . . . . . . . . . . . . . . . 71

Figure 4.3 Dynamic DDES: limiting function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 4.4 Channel flow: U+ profiles at different Reτ . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 4.5 Channel flow: comparison of DDES and dynamic DDES. . . . . . . . . . . . . . . . 76



www.manaraa.com

ix

Figure 4.6 Backward facing step: dynamic DDES results . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 4.7 Backward facing step: Clim contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 4.8 2D periodic hills: dynamic DDES results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.9 3D diffuser: velocity contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 4.10 3D diffuser: velocity profiles from DDES . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.11 3D diffuser: velocity profiles from dynamic DDES . . . . . . . . . . . . . . . . . . . . 81

Figure 4.12 Rotating channel: velocity profiles at different Ro . . . . . . . . . . . . . . . . . . . . 82

Figure 4.13 FAITH: Cf contours and velocity profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.14 FAITH: contours of velocity, k, urms and u′v′. . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.15 FAITH: contours of km, kr, fd and CDES . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 5.1 Comparison of production and dissipation limited DDES . . . . . . . . . . . . . . . 89

Figure 5.2 Dynamic DDES with no check for mesh quality. . . . . . . . . . . . . . . . . . . . . . . 90

Figure 5.3 3D diffuser: velocity profiles from DDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 5.4 3D diffuser: velocity profiles from dynamic DDES. . . . . . . . . . . . . . . . . . . . . 90

Figure 5.5 Channel flow: U+ profiles at different Reτ . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.6 Channel flow: comparison of DDES and dynamic DDES. . . . . . . . . . . . . . . . 92

Figure 5.7 Rotating channel: velocity profiles at different Ro . . . . . . . . . . . . . . . . . . . . . 92



www.manaraa.com

x

ACKNOWLEDGEMENTS

My heartfelt thanks to Dr. Paul Durbin for guiding me these past three years. His insights

and approach to research have been a source of inspiration, and I feel honored to have learnt

from him.

I would also like to thank Dr. Alric Rothmayer, Dr. Anupam Sharma, Dr. James Hill and

Dr. Shankar Subramaniam for kindly serving on the POS Committee. Special thanks to Dr.

Alberto Passalacqua for the discussions I had with him regarding OpenFOAM.

The financial support from NASA Grant NNX12AJ74A and Pratt & Whitney is gratefully

acknowledged, without which my PhD dreams would’ve never materialized.

The learning curve I experienced with OpenFOAM would’ve been steeper if it weren’t for

Sunil. I’ve had several discussions with him regarding the code, which definitely saved me a

lot of time. Special thanks to Elbert and Varun — I learnt a lot from the many technical and

not-so-technical discussions we’ve had. I’d also like to thank my colleagues Xuan, Zifei, Rikhi,

Farid and Umair, who’ve shared conversations and office space with me over the past three

years.

My time in Ames and at Iowa State University has been quite pleasant, thanks to my

friends Kannan, Suganthi, Subbu, Avinaash, Monalisa, Bharat and everyone else. I’ve also had

many memorable trips with my friends from Georgia Tech — Manu, Aditya, Sangeetha, Ravi,

Mahaadevi, Deepa, Vidisha, Ketaki, Apurva, Preethi, Ranjini and so many others — I’ll never

forget our time together, and how much fun we had.

Finally, my pillars of support — my family. Words won’t suffice to acknowledge their

role. To my parents and sister, for their constant encouragement and motivation which was

instrumental in my decision to pursue a PhD, and to my wife, for her support, patience, and

faith in me — thank you.



www.manaraa.com

xi

ABSTRACT

This dissertation describes an alternate formulation for Delayed Detached Eddy Simulation

or DDES. Detached Eddy Simulation (DES) falls under the category of hybrid RANS/LES mod-

els where a single turbulence model functions as either a RANS (Reynolds-Averaged Navier-

Stokes) or an LES (Large Eddy Simulation) model. Certain fundamental issues were identified

in the original DES formulation, which led to revised formulations such as the Delayed DES

(DDES) and Improved DDES (IDDES) with increasing complexity, which negatively impacted

the readability of the model.

This is the motivation to explore an alternate formulation for DES which aims to correct the

issues found in the original DES, while at the same time being simple and easy to understand.

Towards this end, the eddy viscosity formulation in a given RANS model is modified such

that it mimics the Smagorinsky LES subgrid viscosity expression when the model is in eddy

simulation mode. The resemblance of the resulting DES formulation to the Smagorinsky model

allows the implementation of a dynamic procedure to compute the model constant, similar to

the dynamic Smagorinsky model. This was found to improve the model performance in several

cases. The description of this alternate DES formulation and the implementation of a dynamic

procedure in this model will be the major focus of this dissertation.
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CHAPTER 1. INTRODUCTION

1.1 Background

1.1.1 Motivation for hybrid RANS/LES methods

Turbulence is commonly encountered in practical fluid flows. It results in much larger

skin friction, heat transfer rates and species mixing, compared to laminar flows, which makes

accurate prediction of turbulent flows practically important. Hence, turbulence modeling is an

inevitable portion of any Computational Fluid Dynamics (CFD) code which hopes to simulate

any real-world geometry.

A common view of turbulent flows is that they consist of a range of scales, with the size

of the large scales determined by the geometry, and the size of the small scales determined

by the fluid viscosity. The broad range of spatial and temporal scales observed in a turbulent

flow make it impossible to capture the details of all those scales. Resolving the smallest scales

would require very small cell spacing and time steps. This led to the idea of resolving only a

certain range of scales, typically the larger ones, while modeling the effect of the smaller scales.

Two of the most popular turbulence modeling approaches are Large Eddy Simulation (LES)

and Reynolds-Averaged Navier Stokes (RANS) methods.

The LES method models only the smallest scales while resolving all the larger scales. Hence,

in general, it is able to produce accurate results for a wide range of flow configurations. However,

as the Reynolds numberRe of the flow increases, the range of scales to be resolved also increases.

This leads to increased computational cost when using LES models for high Re flows, which is

usually the case for practical engineering configurations. The computational resources required

to simulate such a flow using an LES model are prohibitive (Spalart (2000)).
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RANS methods on the other hand capture only the mean flow (or sometimes only the

largest scales) while modeling the effect of all the fluctuations. Since a much larger portion

of the scales are now being modeled, this leads to a larger error in the computed solution (in

general). RANS models are usually calibrated based on attached flows such as flow over a flat

plate or channel flow, and hence they work well for such cases. However, for cases involving a

separation region, they may be inaccurate (Spalart (2000); Hunt (1990)).

The computational expense of LES and the inaccuracies of RANS for more complex flows

motivated the development of hybrid RANS/LES methods. In wall bounded flows, much of the

expense of LES arises due to a requirement for small cell spacing in the boundary layer. Hence

the idea of using a RANS method to compute the attached boundary layer region and an LES

method to compute the flow past the separation point is an attractive proposition cost-wise.

Hybrid models are relatively new in the field of turbulence modeling, and have garnered the

interest of many researchers.

1.1.2 Detached eddy simulation

Hybrid RANS/LES methods can be broadly classified into 2 categories: zonal and non-

zonal. Possibly the most obvious approach of concocting a hybrid model is to take a RANS

model, and an LES model, and use them simultaneously in separate, user-defined regions within

the flow domain - this is the zonal approach. A concern with such in approach is the interface

between the RANS and LES regions, where some kind of interpolation needs to be used in

order to provide seamless transition between the 2 regions, and is the focus of several investiga-

tions (Schluter et al. (2004); Batten et al. (2004)). Another, more obvious, concern lies in the

determination, by the user, of which regions should be simulated with RANS or LES methods.

This process is likely to be error-prone and based on a trial-and-error approach, especially for

complex geometries.

The non-zonal approach, as the name suggests, is one where the user is not required to

specify the RANS and LES regions. One of the most popular non-zonal hybrid RANS/LES
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methods is Detached Eddy Simulation (DES), which was first proposed by Spalart et al. (1997).

The original DES formulation was based on the Spalart-Allmaras (SA) RANS model (Spalart

and Allmaras (1994)) and it introduced a modified length scale definition

d̃ = min(d,CDES∆), (1.1)

where

CDES = 0.65,

∆ = hmax = max(dx, dy, dz).

d is the distance from the wall, ∆ is the maximum cell spacing and CDES is a model constant.

Substituting d̃ for d in the SA-RANS model is the only change required to obtain the SA-DES

formulation. In the near-wall region, equation (1.1) yields d̃ = d which makes the DES for-

mulation behave like the base SA-RANS model. As we move away from the wall, eventually

d̃ = CDES∆. Using this reduced value for d̃ instead of d enhances the dissipation term in the

effective eddy viscosity equation of the SA-RANS model, leading to a reduction in the eddy

viscosity value. This allows the model to sustain/generate fluctuations, thus behaving like an

LES model.

Another approach similar to DES is the Scale-Adaptive Simulation (SAS) by Menter and

Egorov (2010). SAS also switches between a pure RANS and an LES-like behaviour. Here, the

switch is independent of the grid spacing and instead relies on the local flow physics. However,

this approach fails to sustain turbulent fluctuations in a channel flow.

A classic example of a case with a large separation region is the flow over a circular cylinder.

Indeed, the prediction of such cases with massive separation was one of the main goals of DES.

Figure 1.1 shows the vorticity isosurface obtained using the Spalart-Allmaras URANS model.

As expected, the 2D URANS fails to predict the three-dimensionality in the solution. The 3D

URANS solution is relatively better in this aspect, although the three-dimensionality is still

coarse. The same geometry and flow configuration was simulated with the SA-DES model
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(a) 2D URANS
(b) 3D URANS

Figure 1.1: Flow over a circular cylinder using the SA-URANS model. Figure reproduced from
Spalart (2009).

(a) Grid 1 (b) Grid 2

(c) Grid 3

Figure 1.2: Flow over a circular cylinder using the SA-DES model for 3 different grids. Figure
reproduced from Spalart (2009).
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Figure 1.3: Iso-surfaces of the instantaneous vorticity magnitude using SA-URANS. a) H/D =
0.6 b) H/D = 0.2. Reprinted from Nishino et al. (2008) with permission from Elsevier.

using 3 different grids, with the results shown in figure 1.2. Among the 3 grids, grid 1 is the

coarsest while grid 3 is the finest. The DES model is able to resolve the three-dimensionality of

the flow. As the mesh resolution improves, more and more small scale structures are resolved.

Contrary to the behaviour of the DES model, the RANS model did not show any improvement

with grid refinement.

Another similar study comparing the behaviour of URANS and DES was carried out by

Nishino et al. (2008). Here, the flow over a circular cylinder adjacent to a solid wall was

simulated. 2 geometric parameters of importance here are the cylinder diameter D, and the

distance between the cylinder and the ground H. Several simulations were carried out using

both SA-URANS and SA-DES for different values of the gap ratio H/D. The cessation

of vortex shedding occurs when the gap ratio H/D is reduced below a certain threshold value.

This had been observed experimentally by Nishino and Roberts (2008). Specifically, the vortex

shedding was no longer observed for H/D = 0.2. This behaviour, however, was not observed in

the URANS simulation. Figure 1.3 shows vortex shedding occurring even for the H/D = 0.2

case. On the other hand, DES was able to reproduce the correct behaviour. Figure 1.4 shows

the cessation of vortex shedding for H/D = 0.2.
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Figure 1.4: Iso-surfaces of the instantaneous vorticity magnitude using SA-DES. a) H/D = 0.6
b) H/D = 0.2. Reprinted from Nishino et al. (2008) with permission from Elsevier.

The flow over a delta wing at high angle of attack was studied by Morton (2003) using the

SA-DES model. The wing is at an angle of attack α = 27◦, a flow Mach number M = 0.069

and Reynolds number (based on the chord) Rec = 1.56 × 106. The simulation was carried out

on 4 different grids. Figure 1.5 shows the vorticity iso-surfaces and the turbulent kinetic

energy measured along the core of the vortex. DES is able to capture the unsteadiness well,

and the results improve as the mesh is refined, both qualitatively (more small scale structures

resolved) and quantitatively (more accurate turbulent kinetic energy prediction).

Besides the cases described thus far, the SA-DES model was shown to produce good results

for several different flow configurations such as a landing-gear truck (Hedges et al. (2002)),

ground vehicles (Kapadia et al. (2003); Maddox et al. (2004); Roy et al. (2004); Spalart and

Squires (2004); Sreenivas et al. (2006)), active flow control by suction/blowing (Spalart et al.

(2003); Krishnan et al. (2004)) and aerodynamic noise (Mockett et al. (2008); Greschner et al.

(2008)) among others.

Additionally, it was also shown that the DES formulation is not exclusive to the SA-RANS

model, but is applicable to other RANS models as well. Strelets (2001) applied the DES

formulation to the k−ω SST RANS model of Menter (1993). The wall distance d was replaced
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(a) Instantaneous vorticity iso-surfaces colored
by the spanwise component of vorticity a) G1
(1.2M cells), b) G2 (2.7M cells), c) G3 (6.7M
cells) d) G4 (10.7M cells)

(b) Normalized resolved turbulent kinetic en-
ergy for the four grids

Figure 1.5: Flow over a delta wing at α = 27◦, M = 0.069 and Rec = 1.56 × 106. Reproduced
from Morton (2003).

by a RANS length scale ℓk−ω such that

ℓk−ω =

√
k

β∗ω
, β∗ = 0.09,

ℓ̃ = min(ℓk−ω, CDES∆).

ℓ̃ was used (instead of d̃) to enhance the dissipation term in the k− ω SST RANS model. The

performance of this DES formulation based on the SST RANS model was shown to be similar

to the SA-DES model, which demonstrates that the concept of DES is not exclusive to the

SA-RANS model.

However, despite the promising performance of DES, a couple of fundamental issues were

identified.

The first issue is related to how the DES formulation switches between RANS and LES

behaviour. From equation (1.1), we observe that the switch is dependent only on d and ∆,

the latter of which is a grid parameter, making the switching criterion entirely dependent on

the grid (for stationary meshes). This means that it is possible to generate a grid such that
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when the model switches from RANS to LES, the cell spacing is not fine enough to reproduce

LES content, leading to an underprediction of the resolved Reynolds stresses. This was termed

Modeled Stress Depletion (MSD) by Spalart et al. (2006). In severe cases, this could lead

to premature flow separation due to underprediction of the local wall shear stress. This was

demonstrated by Menter and Kuntz (2002), who used a DES formulation based on the k−ω SST

RANS model (Strelets (2001)), for the case of a flow over an airfoil, where a local near-wall grid

refinement led to premature flow separation and was termed Grid-Induced Separation (GIS).

The separation here is determined by the grid, rather than the flow physics. Menter and Kuntz

(2002) corrected this behaviour by utilizing the blending functions of the k − ω SST model to

prevent the DES model from switching to LES behaviour within the boundary layer. A similar,

more generic, approach was taken by Spalart et al. (2006) to prevent premature switching of

the model behaviour. Rather than using the blending functions of the k−ω SST model (which

are exclusive to that model), a more generic “shielding” function fd, was introduced as shown

below:

d̃ = d− fdmax(0, d − CDES∆), (1.2)

fd = 1− tanh([8rd]
3), (1.3)

rd =
νT + ν

κ2d2
√

Ui,jUi,j

, (1.4)

where νT is the eddy viscosity, ν the kinematic viscosity, κ the Von Kármán constant, and

Ui,j the velocity gradient tensor. The shielding function fd is formulated such that within the

boundary layer fd = 0, and outside the boundary layer fd = 1, with fd transitioning from 0

to 1 towards the edge of the boundary layer. Hence d̃ = d within the boundary layer, and

the DES model always exhibits RANS behaviour. This prevents MSD from occurring, which

also avoids GIS. Outside the boundary layer equation (1.2) yields the original DES behaviour

(equation 1.1). This formulation was termed Delayed DES or DDES (Spalart et al. (2006)).

Like the DES formulation, DDES is not exclusive to the SA-RANS model, and can be applied

to other RANS models as well. This is achieved by rewriting equation (1.2) as

lDDES = lRANS − fdmax(0, lRANS − lLES), (1.5)
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where lRANS and lLES are the RANS and LES length scales respectively, defined based on

the RANS model used. For the SA-RANS model, lRANS = d and lLES = CDES∆ yielding

lDDES = d̃. The generic DDES formulation has been applied to the k − ω SST RANS model

by Gritskevich et al. (2012).

Application of DES to simulate turbulent channel flows led to the exposure of a second

issue. Channel flow simulations by Nikitin et al. (2000) and Piomelli et al. (2003) resulted in

2 log-layers in the non-dimensional mean velocity profiles, each corresponding to the RANS

and LES regions. Figure 1.6 shows the non-dimensional velocity profiles obtained for several

channel flow cases, corresponding to a wide range of Reynolds numbers Reτ (based on the

friction velocity uτ ) and grid resolutions. All the profiles show that the log-layer computed by

the LES region is offset from that computed by the RANS region by ≈ 3U+. This was termed

Log-Layer Mismatch (LLM), and it was observed even in the DDES formulation (Spalart et al.

(2006)). This led to another formulation known as Improved DDES or IDDES, by Shur et al.

(2008), which aimed to alleviate LLM in addition to MSD. The IDDES formulation is partially

reproduced below:

lIDDES = f̃d(1 + fe)lRANS + (1− f̃d)lLES,

lLES = CDES∆, ∆ = min[max(Cwdw, Cwhmax, hwn), hmax],

f̃d = max[(1− fdt), fB], fdt = 1− tanh[(8rdt)
3],

fB = min[2 exp(−9α2), 1], α = 0.25 − dw/hmax,

fe = fe2max[(fe1 − 1), 0],

fe1 =





2 exp (−11.09α2), if α ≥ 0,

2 exp (−9.0α2), if α < 0,

fe2 = 1−max(ft, fl),

ft = tanh[(c2t rdt)
3], fl = tanh[(c2l rdl)

10],

rdt =
νT

κ2d2w
√

Ui,jUi,j

, rdl =
ν

κ2d2w
√

Ui,jUi,j

.

More details regarding the IDDES formulation can be found in Shur et al. (2008).
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Figure 1.6: U+ vs. y+ profiles in channel flow for several Reτ values and grids. Velocity profiles
have been shifted by 5U+ units for the sake of clarity. Reprinted with permission from Nikitin
et al. (2000). Copyright 2000, AIP Publishing LLC.
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Clearly, the IDDES formulation is more involved than the DDES formulation. Several new

functions have been introduced, some of which are empirical in nature. This makes the for-

mulation seem ad hoc, and hard to understand. This additional complexity of the IDDES

formulation was acknowledged by the original authors (Shur et al. (2008)).

The complexity and empiricism of the IDDES formulation is the motivation to explore an

alternate, simpler DES formulation which can overcome both MSD and LLM, and will be the

major focus of this dissertation. We expect a DES model to behave like a RANS model in

the near-wall region, and switch to eddy simulation behaviour away from the wall. Hence one

possible approach to come up with a new DES formulation is to start with a RANS model, and

modify its formulation such that it behaves like a known LES model away from the walls. This

can be accomplished by modifying the RANS eddy viscosity such that it mimics (for example)

the Smagorinsky subgrid viscosity in the eddy simulation region. This approach will be detailed

in Chapter 2, following a brief description of the governing equations and numerical modeling

in the following sections.

1.2 Governing Equations

1.2.1 Conservation equations

For all cases/simulations considered in this dissertation, an incompressible flow assumption

is made. Additionally, the fluid stresses are assumed to be Newtonian, with constant kinematic

viscosity ν. With these assumptions, the governing fluid flow equations, in tensor notation,

are:

∂Ui

∂xi
= 0, (1.6)

DUi

Dt
= −1

ρ

∂P

∂xi
+

∂τij
∂xj

, (1.7)

τij = ν

(
∂Ui

∂xj
+

∂Uj

∂xi

)
= 2νSij , (1.8)

where Ui is the velocity vector, ρ the fluid density, P the pressure and Sij the strain rate tensor.

D
Dt represents the total derivative.
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Equations (1.6) and (1.7) are the mass and momentum conservation equations respectively.

In the case of a turbulent flow, these equations would represent the action of all fluid scales.

However, when using a turbulence model, only a certain range of the larger scales are resolved,

with the effect of the smaller scales being modeled. A common approach of separating the

resolved and unresolved scales by using a filter is shown below:

Ui =Ui + ui.

Ui represents the filtered (or resolved) portion of the velocity, while ui is the residual (or

unresolved) portion. If the filtering operation is applied to the governing equations, it leads to

a set of equations for the filtered variables as shown:

∂Ui

∂xi
= 0, (1.9)

∂Ui

∂t
+

∂UiUj

∂xj
= −1

ρ

∂P

∂xi
+

∂

∂xj
[2νSij ]. (1.10)

Here, it is assumed that differentiation and filtering commute. Details of the filtering operation

can be found in several standard references such as Pope (2000).

In general,UiUj 6=UiUj which makes equation (1.10) different from the momentum equation

(1.7). Defining

τ sij =UiUj−UiUj,

equation (1.10) can be rewritten as

DUi

Dt
= −1

ρ

∂P

∂xi
+

∂

∂xj
[2νSij]−

∂τ sij
∂xj

. (1.11)

The term τ sij represents the effect of the unresolved scales on the filtered velocity field. Since

only the larger scales are being resolved, the value of τ sij is not known explicitly and needs to

be modeled. The type of filter used determines the modeling approach (RANS or LES). For

RANS models, the filtering operation represents an ensemble average such that

ui = 0,

⇒UiUj =UiUj +uiuj.
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This is known as Reynolds-averaging. Following this equation (1.11) can be written as

DUi

Dt
= −1

ρ

∂P

∂xi
+

∂

∂xj
[2νSij ]−

∂uiuj
∂xj

. (1.12)

Equation (1.12) is the governing equation for the average/mean velocity. uiuj is known as the

Reynolds stress tensor and needs to be modeled to obtain closure. One of the most common

modeling approaches is to express the anisotropic portion of the Reynolds stresses as being

proportional to the filtered strain rate tensor, such that

uiuj =
2

3
kδij − 2νTSij. (1.13)

This is popularly known as the Boussinesq approximation. k = 1
2
uiui is known as the turbulent

kinetic energy. Using equation (1.13), the filtered momentum equation (1.12) now becomes

DUi

Dt
= −1

ρ

∂

∂xi
(P +

2

3
ρk) +

∂

∂xj
[2(ν + νT )Sij],

⇒ DUi

Dt
= −1

ρ

∂P̃

∂xi
+

∂

∂xj
[2(ν + νT )Sij ]. (1.14)

The isotropic portion of the Reynolds stress tensor is absorbed into the pressure to yield a

modified mean pressure term P̃ . The effect of the modeled scales is represented by νT , which

acts like the molecular viscosity, and results in a mixing action.

Equations (1.9) and (1.14) are the final forms of the filtered mass and momentum conserva-

tion equations which need to be solved. The mass conservation equation is usually not solved

explicitly, but is instead satisfied by solving a pressure equation. Details regarding the pressure

equation and it’s solution will be presented in section 1.3.

1.2.2 Turbulence model description

The momentum equation (1.14) remains unclosed since νT is yet to be defined. There are

a plethora of methods available to define νT , with each method corresponding to a different

turbulence model. In this dissertation however, we will be focusing on the k− ω RANS model

of Wilcox (1993), which is described as:
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Dk

Dt
= 2νT |S|2︸ ︷︷ ︸

P

−Cµkω +∇ · [(ν + σkνT )∇k], (1.15)

Dω

Dt
= 2Cω1|S|2 − Cω2ω

2 +∇ · [(ν + σωνT )∇ω], (1.16)

νT =
k

ω
, (1.17)

where

D

Dt
=

∂

∂t
+Uj

∂

∂xj
,

|S| =
√

2SijSij .

Equation (1.15) describes the evolution of k = 1
2
uiui, which is the turbulent kinetic energy

(TKE). It is possible to formally derive an equation for k by subtracting the mean velocity

equation (1.12) from the instantaneous velocity equation (1.7), which would yield a governing

equation for the fluctuating velocity ui. Multiplying this equation by ui and taking the Reynolds

average of the entire equation then results in the TKE equation (see Appendix A for details).

Equation (1.15) is based on this TKE equation.

However, the TKE equation and equation (1.15) are not exactly the same. The mean ve-

locity momentum equation has an unclosed Reynolds stress term, which leads to additional

unclosed terms in the TKE equation (some of which are of higher order than the Reynolds

stress tensor). Some of these terms can be closed by the Boussinesq assumption, while addi-

tional approximation would be required to close the remaining terms. The production term

in the TKE equation has been closed via the Boussinesq approximation which yields term P.

The dissipation and transport terms have been closed using additional approximations, with

the final result being equation (1.15).

k = 1
2
uiui is the turbulent kinetic energy. In the RANS formulation, only the mean flow is

resolved, with the effect of all the fluctuations being modeled. Hence k here is better known as

the modeled turbulent kinetic energy.

Broadly, we can think of k as representing the portion of the turbulent kinetic energy due

to the unresolved scales. When the DES formulation is introduced into the RANS model, some
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of the smaller scales which were previously modeled are now resolved. k would then represent

the remaining unresolved scales, and it’s value would change from the RANS value to reflect

this.

The second equation (1.16) in the model describes the evolution of ω (∝ ǫ
k ), which is

known as the specific dissipation rate and has the units of (time)−1. ǫ is the rate of dissipation

of k. Unlike k and the k-equation (1.15), there is no compelling physical meaning behind

the definition of ω and the ω-equation (1.16). In 2-equation models, the first variable of

choice is almost always k, given that it describes real physical processes. The choice of the

second variable/equation however is not as clear. Several models have been proposed which

use different variables (besides ω), such as a turbulence length scale ℓ (Rotta (1951, 1968)),

a turbulence dissipation time τ (Zeierman and Wolfshtein (1986); Speziale et al. (1990)), the

turbulent kinetic energy dissipation rate ǫ (Jones and Launder (1972); Launder and Sharma

(1974)) and the enstrophy ζ (Robinson et al. (1995)) where ζ ∼ ω2. A discussion/comparison

of the pros and cons of all these different models (not to mention algebraic and one-equation

models) is beyond the scope of this dissertation. However, it is worth stating that the k − ω

RANS model exhibits very good near-wall behaviour (Wilcox (1993)) compared to other RANS

models. In the DES formulation, the RANS model is active only in the near-wall region. Hence

it is quite natural to choose k − ω as the base RANS model.

The values of the constants used are

Cµ = 0.09, σk = σω = 0.5, Cω1 = 5/9, Cω2 = 3/40.

These values were determined by calibrating the model to perform adequately for several canon-

ical flows such as channel flow, decay of grid turbulence etc.

Solving equations (1.15) and (1.16) to obtain νT would require the specification of boundary

conditions for k and ω. Of prime importance are the wall boundary conditions. For a simulation

where the wall-normal cell spacing is fine enough such that the viscous sublayer and the buffer

layer are resolved, the following boundary conditions are used:
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kwall = 0,

ωwall →
6ν

βd2
as d → 0.

The specification of kwall is straight-forward — all velocity values become 0 at the wall and hence

k = 0 at the wall. The ωwall specification however becomes complicated since theoretically,

ωwall = ∞ due to kwall = 0, and the TKE dissipation (defined by velocity gradients) at the wall

ǫwall 6= 0. Thus the wall boundary condition for ω instead describes an asymptotic behaviour.

Here β = 0.075 and d is the wall distance at the cell adjacent to the wall.

For simulations where the near-wall region is not well resolved, wall functions would need to

be used to mimic the behaviour of the unresolved viscous and buffer layers. Details regarding

such wall functions can be found in Esch and Menter (2003). All the simulations presented in

this dissertation use fine wall normal cell spacing to resolve the viscous and buffer layers.

Equations (1.15) and (1.16) are now solved to obtain the value of the eddy viscosity νT

from equation (1.17). This is in turn used to attain closure of the filtered momentum equation

(1.14). This completes the description of the k − ω RANS model.

The DES formulation described in this dissertation will be based on the k−ω RANS model

described thus far, where the eddy viscosity equation (1.17) will be modified and used to limit

the production term (with the details presented in Chapter 2).

1.3 Numerical Modeling

To solve the governing equations, the open-source code OpenFOAM (http://www.openfoam.org)

was utilized. A description of the basic structure of the code and the algorithms used can be

found in Weller et al. (1998). OpenFOAM is an unstructured, Finite Volume (FV) solver,

capable of solving an arbitrary number of coupled partial differential equations. A major ad-

vantage of using a FV solver is that unstructured meshes can be used easily. This is especially

convenient when simulating complex geometries.
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In the FV method, the spatial domain is sub-divided into several smaller control volumes

(CV). The values of the dependent variables such as U and P are stored at the centroid of each

CV in a collocated arrangement. Another option is to store the scalar variables in the cell

centroids, while the velocities are stored at the cell faces. This is a staggered arrangement. In

OpenFOAM, the collocated arrangement is used.

The governing equations (1.9) and (1.14) expressed in vector form are

∇ ·U = 0, (1.18)

∂U

∂t
+∇ · (Ū Ū) = −1

ρ
∇P̃ +∇ · ((ν + νT )(∇U +∇UT

)). (1.19)

U is the filtered velocity vector. In the FV approach, equations (1.18) and (1.19) are integrated

over the CV which yields

∫

V
(∇ ·U)dV = 0, (1.20)

d

dt

∫

V
UdV +

∫

V
∇ · (Ū Ū)dV = −1

ρ

∫

V
(∇P̃ )dV +

∫

V
∇ · (νe(∇U+∇UT

))dV , (1.21)

where νe = ν + νT is the effective viscosity. The value of the eddy viscosity νT is obtained by

solving the k − ω RANS equations (1.15-1.17). Similar to the momentum equation (1.21), the

RANS equations (1.15, 1.16) are also solved using the FV approach, with the equations being

integrated over a control volume and in time. The discretization of the individual terms in the

RANS equations is done in a similar manner as in the momentum equation. Hence only the

discretization of the momentum equation will be described in detail, with the same procedure

being followed for the RANS equations. The discretization techniques used to approximate

these integrals will be explained in section 1.3.1.

In addition to the volume integrals, equation (1.21) also has a time derivative which needs

to be solved. This can be solved by employing a temporal discretization, where the solution

is marched forward in time, over a time step ∆t, starting from an initial condition. Details

regarding the temporal discretization will be presented in section 1.3.2.
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1.3.1 Spatial discretization

In the 2nd order FV approach, the values of the variables stored at the centroid of the

CV are assumed to be constant over the entire CV. Thus the volume integral within the time

derivative becomes

∫

Vc

UdV ≈UcVc, (1.22)

where Vc is the cell volume and Uc is the value of the velocity vector stored at its centroid.

In OpenFOAM, some of the volume integrals in equation (1.21) are converted to surface

integrals via Gauss’s divergence theorem which states that

∫

V
∇ · φdV =

∮

S
φ · dS, (1.23)

where φ is an arbitrary tensor field of at least 1st order, S the bounding surface of the volume

V , and dS the infinitesimal area vector pointing outward. The surface integrals are in turn

approximated as the sum of the fluxes across the cell faces.

∮

S
φ · dS ≈

∑

f

Sf · φf . (1.24)

The summation here is over all the cell faces. Sf is the face area vector. φf is the value of φ

at the face f and is assumed to be constant over the entire face. Since the variable values are

stored at the cell centers, some kind of interpolation needs to be performed to estimate φf .

The requirements of the interpolation scheme to be used varies depending on whether we

are using a RANS model or an LES model. An LES model aims to capture small scale fluctua-

tions. This means that if the scheme being used is diffusive, it will reduce the amplitude of the

fluctuations, and in the worst case, it could completely dampen them. An example of such a

dissipative scheme is the Upwind Difference scheme which can be of either first order or second

order (Warming and Beam (1976)). Hence although such schemes would be compatible with

RANS models, they cannot be used in conjunction with LES or hybrid RANS/LES methods.

Hence it is quite clear that a non-dissipative scheme needs to be used for spatial discretiza-

tion. A viable option in this case is the Central Difference (CD) method, which is 2nd order
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accurate (Ferziger and Peric (2002)), and assumes linear variation of the solution between 2

control volumes such that,

φf = dφC + (1− d)φN . (1.25)

φC represents the variable value at the current cell, and φN is that at a neighbouring cell for

which f is the common face. d here is a distance factor such that d = |−→fN |/|−−→CN |. |−→fN | is

the distance between the centroid of neighbour N and face f . Likewise, |−−→CN | is the distance

between the current cell C and neighbour N .

Given that a DES method (which is hybrid RANS/LES) will be used for all the simulations

presented in this dissertation, unless otherwise stated explicitly, the Central Difference scheme

is the method of choice for the spatial interpolation/discretization of all the terms in the gov-

erning equations, in order to minimize errors due to numerical dissipation.

The non-dissipative nature of the CD scheme can be a double-edged sword depending on

the application, since it is known to become unstable. A cell Reynolds number Rec can be

defined as

Rec =
U∆

νφ
,

where ∆ is a measure of the cell dimension and νφ is the diffusion coefficient of the variable

φ for which the CD interpolation is being used (νφ = ν for φ = U). For Rec > 2, the CD

method is likely to become unstable (de Villiers (2006)), in which case the mesh would have to

be refined to obtain a stable solution.

The convection term in equation (1.21) is simplified using equations (1.23) and (1.24) as

follows

∫

Vc

∇ · (Ū Ū)dV =

∮

Sc

dS · (Ū Ū),

≈
∑

f

Sf · (Ūf Ūf ),

=
∑

f

(Sf · Ūf )Ūf . (1.26)



www.manaraa.com

20

Here both the flux (Sf ·Ūf ) and the convected variable (Ūf ) are unknown resulting in a quadratic

function for velocity. In order to simplify this, the flux term is computed using velocity values

from a previous iteration/time step. Equation (1.26) then becomes

∫

Vc

∇ · (Ū Ū)dV ≈
∑

f

(Sf · Ūn−1
f )Ūn

f . (1.27)

Here the superscript n refers to the current iteration for which the variables values need to be

computed, while n − 1 refers to values from a previous iteration/time step which are known.

Typically, the momentum equation is solved iteratively until the velocity values do not change

significantly between successive iterations. This ensures that Ūn−1
f = Ūn

f towards the end of

the iteration (within a specified tolerance). This will be explained later in section 1.3.3.

Gauss’s theorem is also used to simplify the diffusion term in equation (1.21). This yields,

for a generic diffusion term,

∫

Vc

∇ · (νφ∇φ)dV ≈
∑

f

Sf · (νφ∇φ)f ,

=
∑

f

(νφ)fSf · (∇φ)f . (1.28)

Equation (1.28) represents the discretization for the diffusion of a generic variable φ. The

diffusion coefficient (νφ)f is calculated via the CD method (equation 1.25). The face gradient

(∇φ)f is found using

Sf · (∇φ)f = |Sf |
φN − φC

|−−→CN |
. (1.29)

The above equation works only if Sf and
−−→
CN are parallel, i.e. the mesh is orthogonal. For

non-orthogonal meshes, the following relation is used

Sf · (∇φ)f = |SfCN
|φN − φC

|−−→CN |︸ ︷︷ ︸
orthogonal

+Sfd
· (∇̃φ)f︸ ︷︷ ︸

non-orthogonal

, (1.30)

(∇̃φ)f = d(∇φ)C + (1− d)(∇φ)N , (1.31)

(∇φ)C =
1

Vc

∑

f

Sfφf , (1.32)
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where SfCN
represents the component of Sf parallel to

−−→
CN , and Sfd

= Sf −SfCN
. Equation

(1.31) is analogous to equation (1.25).

Equation (1.30) results in a larger stencil to compute the face gradients when the mesh is

non-orthogonal. In order to retain the same stencil as the orthogonal case, the non-orthogonal

term is computed explicitly using φ values from the previous iteration/time step.

The non-orthogonal correction term could lead to solution instability when the mesh non-

orthogonality is high (de Villiers (2006)). Hence the grid used must be constructed such that

the non-orthogonality is kept to a minimum.

The discretization described above is applied to the diffusion term in equation (1.21) as

follows

∫

Vc

∇ · (νe(∇U+∇UT
))dV =

∫

Vc

∇ · (νe(∇U))dV +

∫

Vc

∇ · (νe(∇U
T
))dV ,

≈
∑

f

(νe)fSf · (∇U)f +∇ · [νe∇(U
n−1

)T ]Vc. (1.33)

In OpenFOAM, the diffusion term is split into 2 terms — one containing ∇U and the other with

its transpose ∇UT
. Treating the transpose term as a diffusion term as well would result in the

value of each velocity component become dependent on the other components (since each row

in ∇UT
contains u, v and w gradients) resulting in a linked system of equations which would

increase the computation cost. Therefore, the transpose term is computed explicitly using

values from the previous iteration/time step, while the gradient term is treated in a similar

manner as the generic diffusion term.

1.3.2 Temporal discretization

The temporal discretization scheme used in OpenFOAM is now described.

In order to obtain 2nd order accurate solutions, both the spatial and temporal discretizations

need to be 2nd order accurate. If fn represents the solution at the current time step, then

fn−1, fn+1 are the solutions at the previous and next time step respectively. fn−1 and fn are

known, while fn+1 needs to be calculated. A simple 2nd order accurate implicit scheme for
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approximating the temporal derivative can be obtained using Taylor series expansion for fn−1

and fn around fn+1 as follows:

fn−1 = fn+1 − 2fn+1
t ∆t+ 2fn+1

tt ∆t2 +O(∆t3), (1.34)

fn = fn+1 − fn+1
t ∆t+ 0.5fn+1

tt ∆t2 +O(∆t3), (1.35)

⇒ 2fn − 1

2
fn−1 =

3

2
fn+1 − fn+1

t ∆t+O(∆t3), (1.36)

⇒ fn+1
t =

1

∆t

(
3

2
fn+1 − 2fn +

1

2
fn−1

)
+O(∆t2). (1.37)

The subscripts t and tt represent first and second order differentiation with respect to time.

Hence equation (1.37) represents the implicit discretization for the first order time derivative

term, which can be used to discretize the temporal derivative in equation (1.21). As can be

observed, the discretization is 2nd order accurate in time. Since the spatial discretization is

also 2nd order accurate (CD method), the overall accuracy would be of 2nd order.

1.3.3 The pressure equation

The spatial and temporal discretization of all the terms in the integral form of the momen-

tum equation (1.21) have been dealt with in sections 1.3.1 and 1.3.2 except for the pressure

gradient term.

Thus far we have 2 governing equations (1.20, 1.21) and 2 unknowns - the velocity U and

pressure P̃ . However, P̃ only appears in 1 equation. In compressible flows, a state equation

relating pressure to density is normally used to compute the pressure. For incompressible

flows (as is the case in this dissertation), this is no longer possible and a different equation

for pressure is required. The pressure is solved for using the PISO (Pressure Implicit with

Splitting of Operators) algorithm of Issa (1986). Once the discretization techniques described

in sections 1.3.1 and 1.3.2 are applied to the momentum equation (1.21), a system of equations

are obtained

AU = −∇P̃ . (1.38)
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The pressure gradient term ∇P̃ is yet to be discretized. A represents the coefficient matrix

obtained after discretization (which is known). The A matrix is now split as

AU = AcU−H , (1.39)

⇒ AcU = H −∇P̃ . (1.40)

Ac is the diagonal of A which contains the current cell coefficients. −H contains the off-diagonal

terms which represent the neighbour coefficients multiplied by their respective velocities. Then

equation (1.40) can be written as

U = (Ac)
−1H − (Ac)

−1∇P̃ . (1.41)

Applying mass conservation, we get

∇ ·U = ∇ · [(Ac)
−1H − (Ac)

−1∇P̃ ],

⇒ ∇ · [(Ac)
−1∇P̃ ] = ∇ · [(Ac)

−1H ]. (1.42)

Since Ac is a diagonal matrix, computing (Ac)
−1 is straight-forward. Equation (1.42) is the

Pressure Poisson equation which can be used to solve for pressure. Since mass conservation

was employed in the derivation, solving the pressure equation obviates the need to solve the

mass conservation equation separately.

Equation (1.42) is written for a single CV as

∇ ·
[
∇P̃c

ac

]
= ∇ ·

[
h

ac

]
. (1.43)

ac and h are the coefficients for the current cell and its neighbours respectively (h contains the

velocities as well). Similarly, equation (1.41) is written for a single CV and face values as

Uc =

(
h

ac

)
−
(
∇P̃c

ac

)
, (1.44)

(Uc)f =

(
h

ac

)

f

−
(
∇P̃c

ac

)

f

. (1.45)

Equation (1.44) is used to compute the velocities at the cell centers once the pressure is known.

Likewise, the face values are updated using equation (1.45) to compute the fluxes.
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Gauss’s divergence theorem is applied to equation (1.43) which, for a single CV, yields the

following

∑

f

Sf ·
(

1

ac

)

f

(∇P̃c)f =
∑

f

Sf ·
(
h

ac

)

f

, (1.46)

where the pressure Laplacian is treated in a similar manner to the generic diffusion term.

The PISO algorithm can now be described:

1. The turbulence variables (k, ω, νT ) are first computed using the velocity, pressure and flux

values from the previous iteration/time step or the initial conditions. The individual terms

in the turbulence equations are treated in the same manner as those in the momentum

equation.

2. The momentum equation is solved using the previous iteration/time step values for P̃ and

the fluxes. The matrix system is solved using the Preconditioned BiConjugate Gradient

algorithm, with the simplified, diagonal-based, incomplete-LU preconditioner (Ferziger

and Peric (2002)). The iterations are repeated until the velocity values between 2 suc-

cessive iterations do not differ by a value larger than a specified tolerance. The resulting

velocity field is U
∗

. In general, U
∗

does not satisfy the continuity equation since the

pressure equation is yet to be solved. This is the predictor step.

3. U
∗

is used to update the H matrix and the pressure equation is now solved using the

Preconditioned Conjugate Gradient algorithm, with the diagonal incomplete Cholesky

preconditioner (Ferziger and Peric (2002)). This is the corrector step.

4. For non-orthogonal meshes, the pressure equation is solved again in order to converge

the non-orthogonal component. Depending on the mesh non-orthogonality, 1-2 corrector

steps might be required.

5. Once the pressure is known, the velocities at the cell centers and the fluxes at the cell

faces are updated using equations (1.44) and (1.45).
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6. Steps 3-5 are repeated until the solution variables do not change significantly (based on

a user-specified tolerance) between successive iterations.

7. The algorithm now proceeds to the next time step, with the current values used as initial

guesses, and the entire solution procedure is repeated. This goes on until either the

solution variables do not change significantly between successive time steps, or a certain

no: of time steps have passed (depends on user-input).
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CHAPTER 2. A DDES MODEL WITH A SMAGORINSKY-TYPE

EDDY VISCOSITY FORMULATION AND LOG-LAYER MISMATCH

CORRECTION

K. R. Reddy, J. A. Ryon, P. A. Durbin, (2014)

International Journal of Heat and Fluid Flow, 50, 103-113

The current work develops a variant of delayed detached eddy simulation (DDES) that

could be characterized as limiting the production term. Previous formulations have been based

on limiting the dissipation rate (Spalart et al. (2006)). A clipped length scale is applied directly

to the eddy viscosity, yielding a Smagorinsky-like formulation when the model is on the eddy

simulation branch. That clipped eddy viscosity limits the production rate. The length scale

is modified in order to account for the log-layer mismatch (a well-known issue with DDES),

without using additional blending functions. Another view of our approach is that the subgrid

eddy-viscosity is represented by a mixing length formula l2ω; in the eddy field ω acts like

a filtered rate of strain. Our model is validated for channel flow as well as separated flows

(backward-facing step, 2D periodic hills) and illustrated via an air-blast atomizer.

2.1 Introduction

Hybrid RANS/LES models are considered to have promise for industrial CFD applications,

where the idea is to employ RANS in the near wall part of attached boundary layers, and eddy

resolving simulation in regions away from the surface. Detached Eddy Simulation (DES) falls

under this category of hybrid methods. DES was first proposed by Spalart et al. (1997) and

since then, the method has undergone considerable revision. Menter and Kuntz (2002) pointed

out that artificial Grid Induced Separation (GIS) could occur if, when the switch from RANS
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to Eddy Simulation took place, the reduction of eddy viscosity was not balanced by resolved

turbulent content. This effect was termed Modeled Stress Depletion (MSD). Towards this end,

the blending functions of the k − ω SST model were used as a “shield” to prevent the model

from switching to eddy simulation within the lower part of the boundary layer. Following this,

Spalart et al. (2006) introduced a generic shielding function, applicable to any RANS model,

and the resulting formulation was termed Delayed DES (DDES) — although it might better

be called shielded DES.

Another perspective on DES is that it has an ability to function as a type of Wall-Modeled

LES (WMLES). Initial attempts to use the original DES as a WMLES formulation in a channel

flow (Nikitin et al. (2000); Piomelli et al. (2003)) resulted in two, mismatched log-layers — one

from the RANS branch, and the other from the eddy resolving branch. This anamoly was

termed Log-Layer Mismatch (LLM) — an issue which is present in the DDES formulation as

well.

Breuer et al. (2003) noted that hmax = max(dx, dy, dz) may not be a suitable length scale to

use in the eddying regions of DES, and that using V 1/3 instead, where V is the cell volume,

produced better results. The fact that a different length scale definition is required was also

implied in a formulation termed Improved DDES (IDDES) (Shur et al. (2008)), which required

the modification of the length scale definition to be used in the eddying region. In addition

to revised length scales, more complex blending functions were introduced in order to ensure

that the model performed adequately as a WMLES formulation. The blending functions in

the IDDES formulation are responsible for allowing the LES functionality within the boundary

layer in the presence of turbulent fluctuations, provided the grid is fine enough. And along

with a modified length scale definition, they alleviate LLM seen in the channel flow. This is

the key difference between DDES and IDDES.

Yet another variation of DES, known as Zonal DES (ZDES) (Deck (2012)) also employs V 1/3

(or ∆ω, which depends on the orientation of the vorticity ω as well as the local cell spacing)

in the eddying region. However, as the name would suggest, ZDES requires the user to specify

the RANS and eddying regions.
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In the present article, a different variant of DDES is developed and applied to the k − ω

model (Wilcox (1993)). The motive for the present approach is to make DES more similar to

LES in the eddying region. It has been observed (Spalart (2009); Breuer et al. (2003)) that

LES often produces more accurate results than DES. Hence, our objective is to make use of

DES to reduce near-wall grid requirements (Spalart et al. (2006)) and, simultaneously, to make

the eddy viscosity similar to the Smagorinsky formula far from the surface.

Rather than utilizing the length scale in the dissipation term of the k-equation, it is used

to define the subgrid eddy viscosity, which is then used to define the production term. This

definition of the eddy viscosity makes it a function of the length scale, similar to the definition

used for the subgrid eddy viscosity in the Smagorinsky model. This definition additionally pro-

vides a method to estimate the value of the model constant by comparing it to the Smagorinsky

eddy viscosity formulation. Hence the model can be viewed as a Smagorinsky DES model with

k − ω as the underlying RANS model.

Additionally, the length scale is redefined to ameliorate the issue of LLM without requiring

the blending functions of IDDES. The absence of any blending functions (as described in Shur

et al. (2008)) in the current formulation would indicate that the near wall behaviour of the

current model is more similar to DDES than IDDES. This will be dealt with in more detail in

§2.3.1.

The open source code OpenFOAM (Weller et al. (1998)) was used for all the present com-

puter simulations. Gaussian finite volume integration with central differencing for interpola-

tion, was selected for spatial discretization of equations. Time integration was by the 2nd order,

backward difference method. The resulting matrix system was solved using the Pre-conditioned

Bi-conjugate gradient algorithm, with the simplified, diagonal-based, incomplete-LU precondi-

tioner. Solution for the matrix system at each time step was obtained by solving iteratively,

by specifying an appropriate tolerance for the residual norm.

2.2 Model Formulation

The eddy viscosity can be understood as the product of turbulence length-scale times

velocity-scale. The DES method is to clip the length scale; but, alternatively, the velocity
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scale — or both velocity and length scales — could be clipped. This leads to our proposed

method.

Let ℓ be a length scale, to be defined. In DES the RANS length scale is clipped by the grid

dimension. For k − ω, the RANS length scale is
√
k/ω and a length scale, ℓ, clipped for DES

is defined as (Spalart et al. (1997))

ℓ = min
[√

k/ω,CDES ∆
]
, (2.1)

where CDES is an empirical constant, and ∆ is an appropriate measure of grid size, e.g.,

max[∆x,∆y,∆z]. CDES∆ is a measure of whether the grid can capture the dominant turbulent

eddies. One could alternatively use equation (2.1) to define a clipped velocity uℓ. Multiplying

through by ω,

uℓ = min
[√

k, ω CDES∆
]
. (2.2)

The eddy viscosity k/ω could be represented as ℓ2ω or as u2ℓ/ω; they lead to the same result:

before clipping, either one is k/ω. After the clip is in effect

νT = ℓ2ω → (CDES∆)2ω, (2.3)

similar to the Smagorinsky model.

The k − ω equations are (Wilcox (1993))

Dk

Dt
= 2νT |S|2 − Cµkω + ∂j [(ν + σkνT ) ∂jk] ,

Dω

Dt
= 2Cω1|S|2 − Cω2ω

2 + ∂j [(ν + σωνT ) ∂jω] ,

νT =
k

ω
.

(2.4)

The clip (2.2) preempts the first of these; in the eddying region it, rather than the k-equation,

defines the velocity scale. If the transport terms were dropped from the second of equations

(2.4) it would become

ω2 =
2Cω1

Cω2
|S|2 = 400

27
|S|2.

The standard constants (Wilcox (1993)) Cω1 = 5/9, Cω2 = 3/40 were inserted. Then equation

(2.3) becomes

νT = (CDES∆)2
20

3
√
3

√
|S|2.
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The constant CDES can be estimated by equating this to (Cs∆)2
√

2 |S|2, where Cs is the

Smagorinsky constant (≈ 0.2). This estimate is CDES ≈ 0.12, which was found to be satisfac-

tory in validation studies (discussed towards the end of the section).

Dropping transport terms from eqn. (2.4) is not legitimate, so one can view the proposed

2-equation DES model as equation (2.4), the clip (2.1 or 2.2) and the eddy viscosity definition

νT = ℓ2ω. (2.5)

Away from the wall, the ω-transport equation (2.4) is a diffusive smoother of the rate-of-strain

field. In that sense, it is a filter of the resolved eddy field. Equation (2.5) is analogous to the

Smagorinsky model, in which this ‘filtered’ variable substitutes for the rate of strain. Near the

wall, boundary conditions are dominant, and this interpretation of the ω-equation fails; but

that is the RANS region.

The DDES modification introduces the shielding function fd (Spalart et al. (2006))

fd = 1− tanh ([Cd1rd]
Cd2) [Cd1 = 8, Cd2 = 3],

rd =
k/ω + ν

κ2d2w
√

Ui,jUi,j

,
(2.6)

into equation (2.1), where k/ω is the RANS eddy viscosity, ν the molecular viscosity, κ the von

Kármán constant, dw the distance to the wall, and Ui,j is the velocity gradient tensor.

The DDES length scale is defined as

lDDES = lRANS − fdmax(0, lRANS − lLES),

lRANS =

√
k

ω
,

lLES = CDES∆.

(2.7)

The length scale lDDES is then used to define the eddy viscosity νT as

νT = l2DDES ω, (2.8)

so that when fd = 0 the eddy viscosity formula gives νT = k/ω and the model operates in

RANS mode. Alternatively, when fd = 1 and lLES < lRANS the eddy viscosity formula gives

νT = (CDES∆)2ω and the model is fully in eddy simulation mode.
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This definition of νT is used in the turbulent kinetic energy production term, leaving all the

other terms unaltered.

Dk

Dt
= 2νT |S|2 − Cµkω +∇ · [(ν + σk(k/ω))∇k],

Dω

Dt
= 2Cω1|S|2 − Cω2ω

2 +∇ · [(ν + σω(k/ω))∇ω].

(2.9)

The standard constants are invoked,

Cµ = 0.09, σk = 0.5, σω = 0.5,

Cω1 = 5/9, Cω2 = 3/40.

By using the same eddy viscosity (equation 2.8) in the momentum equation and the production

term, the latter retains its usual meaning of energy transfer from the resolved field to k.

So, another interpretation of the present approach is that the production rate is clipped,

rather than the original DES approach of clipping the dissipation rate. To highlight this, the

k − ω SST based DDES formulation (Gritskevich et al. (2012)) is shown below:

Dk

Dt
= Pk −

√
k3/lDDES +∇ · [(ν + σkνTRANS

)∇k], (2.10)

Dω

Dt
=

αPk

νTRANS

− βω2 +∇ · [(ν + σωνTRANS
)∇ω]

+ 2(1− F1)σω2

∇k · ∇ω

ω
, (2.11)

where

νTRANS
=

a1k

max(a1ω,F2S)
.

The definitions of the several variables involved such as Pk, F1 etc can be found in Gritskevich

et al. (2012). We note that the DDES length scale lDDES is used to clip the dissipation term of

the k−equation with the eddy viscosity retaining the RANS definition, whereas in the current

approach, lDDES is used to define the eddy viscosity, which in turn clips the production term

of the k−equation.

From a modeling perspective, limiting either the dissipation term or the production term

achieves similar objectives. If we consider a flowfield resulting from a RANS simulation, the

entire eddy viscosity field would be the modeled effect of all the turbulent scales. DES limits
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this modeled component, which allows for unsteadiness to develop as part of the flow solution

(either due to a flow instability or due to initial/boundary conditions). This was achieved by

enhancing the destruction term of the model equations, based on the DES clip. In the current

formulation, this is achieved by limiting the production term instead. A comparison between

these two approaches is dealt with in §2.3.1.

In the original DDES formulation

∆ = hmax ≡ max[∆x,∆y,∆z].

However, based on previous studies (Breuer et al. (2003); Shur et al. (2008); Deck (2012)) it is

clear that a different length scale definition needs to be used in the eddying region. We have

found that the LLM issue (§2.3.1) is alleviated by redefining ∆ as

∆ = fdV
1/3 + (1− fd)hmax, (2.12)

where V is the cell volume. In the eddy simulation region fd = 1 and this gives V 1/3 — as

is used in LES. Switching from hmax near the wall to V 1/3 farther out reduces ℓDDES and

hence the eddy viscosity. That allows the resolved eddies to develop at small scales. This is

the definition of ∆ used for all the cases presented herein.

Rather than equation (2.12), if we simply used

∆ = V 1/3, (2.13)

we would still achieve our goal, in the sense that the model will be using V 1/3 as the length

scale in the eddying region, for fd = 1. The difference between equations (2.12) and (2.13)

lies in the region where 0 < fd < 1, which lies towards the edge of the boundary layer. In

this region, eqn. (2.12) uses a blend of hmax and V 1/3, resulting in a larger value of ∆ than

when using eqn. (2.13), which leads to a larger value for νT . Hence in the absence of turbulent

velocity fluctuations to balance this reduction in the eddy viscosity, eqn. (2.13) would lead to

lower νT values, and consequently, lower skin-friction.

A prime example of such a scenario would be the flow over a flat plate. Figure 2.1 shows

the Cf distribution obtained using both equations (2.12) and (2.13), compared with the RANS
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Figure 2.1: Distribution of the skin-friction co-efficient Cf for a flat plate: Solid line - k − ω
RANS (Wilcox (1993)), Dotted line - current DDES with eqn. (2.12), Dashed line - current
DDES with eqn. (2.13)

prediction. The mesh used here was constructed such that hmax ≈ δ (δ being the boundary

layer thickness at Rex = 107) upto Rex = 5×106, after which the cell spacing was changed such

that hmax ≈ 0.2δ. This corresponds to an “ambiguous” grid spacing (Spalart et al. (2006)),

where MSD (and consequently GIS) could occur. It has been noted (Gritskevich et al. (2012))

that the shielding function fd does not completely eliminate the issue of MSD. This leads to

lower νT and hence, lower Cf . Hence eqn. (2.12) is used for all the cases presented here. To

reiterate, the difference between using equations (2.12) and (2.13) arises only in the absence of

turbulent fluctuations. For cases with unsteady flow fields (such as channel flow), they would

both yield identical results.

The Cf prediction for the flat plate can be improved by increasing the extent of the shielded

region (Gritskevich et al. (2012)). However tests on a flat plate boundary layer (fig. 2.2) show

that values of 8 and 3 for the constants Cd1 and Cd2 in equation (2.6) provide adequate shield-

ing, and hence those values were retained.

One final aspect related to the model formulation that needs to be explored is the sensitivity

of the model to the value of the model constant CDES. Using the length scale definition (2.12),

simulations of channel flow were carried out for a range of values of the model constant CDES.

The results are summarized in fig. 2.3. This figure shows limited sensitivity to the exact value

of CDES used. Values within 50% of 0.12 produce similar mean velocities. Values as low as
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Figure 2.2: Comparison of the fd shielding function for different models: Solid line - Spalart-
Allmaras DDES (Spalart et al. (2006)), Dotted line - k−ω SST based DDES (Gritskevich et al.
(2012)), Dashed line - current DDES based on k − ω model (Wilcox (1993))

0.03 and as high as 0.3 produce erroneous mean flow profiles because the RANS-to-eddying

switch occurs too near, or too far from the wall.

2.3 Test Cases

2.3.1 Channel flow

Nikitin et al. (2000) attempted WMLES with the original DES in a channel flow with mixed

results. Although it was shown that DES was capable of sustaining LES content, the resulting

velocity profile contained two log-layers. Spalart et al. (2006) noted that the DDES formu-

lation also exhibits LLM. Not surprisingly, when that same length scale formulation (except

for a changed value of CDES) is adopted for the present model, the same log-layer mismatch

(LLM) is seen, as shown by the dashed line in fig. 2.4a; although, the mismatch is not as severe

as was observed for other DDES models (Shur et al. (2008)). The solid line in that figure is

the mean velocity profile obtained upon using equation (2.12); it is more consistent with the

RANS profile. This length scale definition also exhibits better usage of the grid by the LES

branch of the model, as shown in fig. 2.4b, where a larger portion of the Reynolds stress has

been resolved, compared to the case with ∆ = hmax.
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Figure 2.3: Velocity profiles obtained for different CDES values in channel flow (Reτ = 4, 000)

Further simulations of channel flow at different values of Reτ were done with equation (2.12)

and are shown in fig. 2.5. The velocity profiles are compared to the k − ω RANS model, and

the agreement is quite good for all the cases.

In addition to correcting LLM, IDDES differs from DDES in the behaviour of the near-wall

regions. Shur et al. (2008) noted that DDES tends to dampen the turbulent content at the

RANS-LES interface, which IDDES corrected. In this regard, the current model is more akin

to DDES rather than IDDES. Fig. 2.6a represents a wall-parallel plane just before the model

switches from the RANS branch to the LES branch and it highlights the dampening effect of

DDES at the RANS-LES interface. Fig. 2.6b represents a plane well inside the LES branch,

where the turbulent content is better resolved. This region represents a location at which both

DDES and IDDES are known to behave similarly (Shur et al. (2008)). The dampening

effect of DDES can be seen in the variation of the RMS of velocity fluctuations (fig. 2.7),

where the resolved velocity fluctuations obtained with the current DDES model for the case

Reτ = 2250 have been compared to DNS data (Hoyas and Jiménez, (2006)) corresponding to

Reτ = 2003. Overall, the resolved fluctuations are dampened near the RANS-LES interface (at

y/h ≈ 0.1), although the streamwise fluctuations slightly overshoots the DNS values locally.

The near-wall peaks are not resolved since the model is in RANS mode, and the major contri-

bution to the Reynolds stress would be due to the modeled component (i.e. the eddy viscosity).
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half-width, Reτ = 8000

It was stated in the previous section that using the DES clip to limit either the production

or the dissipation term achieves similar objectives. Towards this end, an additional channel

flow simulation was carried out such that lDDES now clips the dissipation term, leading to the

model formulation shown below (similar to Gritskevich et al. (2012)):

Dk

Dt
= 2νT |S|2 −

√
k3

lDDES
+∇ · [(ν + σk(k/ω))∇k].

Accordingly, lRANS , νT and CDES were redefined

lRANS =

√
k

Cµω
,

νT =
k

ω
,

CDES = 0.65,

with the other variable definitions (∆, lLES etc.) and the ω−equation remaining unaltered.

CDES = 0.65 was chosen based on the original DES recommendations (Spalart et al. (1997)).

This formulation yields similar results as the current production-limited DDES, as can be seen

from a comparison of the velocity profiles obtained using both approaches (fig. 2.8). Addition-

ally, the instantaneous vorticity field, as in fig. (2.6), obtained (not shown here) is also similar

to the production-limited case.
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Figure 2.5: U+ profiles for channel flow at different Reτ

Overall, the current production-limited approach produces similar results as the original

dissipation-limited approach. Hence our current approach can be viewed as an alternate for-

mulation for DES.

The grid used for all the above simulations had (∆x/H,∆z/H) = (0.1, 0.05) with about

750, 000 grid points. The extent of the computational domain is same as that described in Shur

et al. (2008). The streamwise and spanwise cell spacing was kept the same for all simulations.

In wall units, this corresponds to (∆x+,∆z+) = (225, 112.5) for Reτ = 2250, (∆x+,∆z+) =

(400, 200) for Reτ = 4000, (∆x+,∆z+) = (800, 400) for Reτ = 8000, and (∆x+,∆z+) =
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(a) y/H = 0.1 (b) y/H = 0.8

Figure 2.6: Contours of y-component of vorticity along XZ planes in the channel; Reτ = 4000
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(1800, 900) for Reτ = 18000. The wall-normal grid spacing was adjusted such that ∆y+ < 1

at the wall for each simulation. The maximum local CFL number over the entire domain was

≈ 0.5

2.3.2 Flow over backward facing step

For the model developed herein to predict separated turbulent shear layers, the switch from

the RANS branch to the Eddy Simulation branch must trigger eddying abruptly. Flow over a

backward facing step is a critical test case. The attached boundary layer prior to the step and

the boundary layer on the entire opposite wall should be in RANS mode, and the model should

switch to eddying mode immediately after the flow separates. Here, the experiment of

Vogel and Eaton (1985) has been simulated. The inflow Reynolds number based on the bulk
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Figure 2.9: Flow over backward-facing step: Model switches to eddying mode at step and
eddies are formed.
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velocity and step-height H is 28,000. As in previous simulations of this case (Spalart et al.

(2006); Gritskevich et al. (2012)), the channel height and length before the step are 4H and

3.8H respectively. Post-step, the channel length is 20H. The spanwise domain size is 4H. The

mesh consists of 1.1 million cells with 40 cells spaced uniformly along the spanwise direction.

Grid points are clustered near the walls and also near the step, with about 40 − 50 points

distributed (in the wall-normal direction) over the post-step shear layer region alone. The CFL

number over the entire domain was less than one, with a maximum local value of CFL ≈ 0.7

occurring at the vicinity of the step, where the streamwise cell spacing is minimum. RANS

profiles of velocity, k and ω, obtained from a boundary layer calculation, were specified at the

inlet. A constant pressure was specified at the outflow, and periodicity was enforced across

the span. No perturbations were added to the inlet profiles, so unsteadiness arises due to the

inherent shear-layer instability after the step.

Fig. 2.9a, which is a contour of the fd variable, shows that the model stays in RANS mode

for the attached boundary layers before the step (x/H < 0, y/H = 1) and along the entire

opposite wall (y/H = 5) and switches to eddying immediately after the flow separates. The

dark contours delimit the RANS regions.

The unsteadiness after the step is apparent in both the eddy viscosity field (fig. 2.9b) and

Q-criterion (fig. 2.9c). In the eddying region, the subgrid viscosity drops to values on the order

of 20 or less, similar to well-resolved LES.

The simulation data are in good agreement with the experimental results, as shown in

fig. 2.10a, 2.10b and 2.10c, where the mean velocity, the rms velocity profiles at various stream-

wise locations and the Cf distribution along the bottom wall are plotted.

For the same grid and flow conditions, a simulation was carried out using the k−ω-SST based

DDES model (Gritskevich et al. (2012)). Fig. 2.11a shows the instantaneous velocity contours,

which reveals that there are no turbulent eddies being formed after the step. Therefore, there is

too little turbulent transport of momentum in the wall-normal direction, thus resulting in the

flow remaining separated for a longer distance, as shown in fig. 2.11c. One possible reason as

to why no eddies are forming can be gleaned from fig. 2.11b, which shows that, in the post-step

shear layer, the eddy viscosity is quite high — comparable to the value seen in the pre-step
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boundary layer and along the top wall. This relatively high value of νT (compared to fig. 2.9b)

would damp out any eddies that might form after the flow separates at the step. Thus, for a

relatively coarse LES mesh where a significant portion of the turbulent scales in the inertial

range would be filtered out, using ∆ = hmax tends to overestimate the eddy viscosity value,

leading to a damping of the large scale eddies which should’ve been resolved.

To further corroborate this view, a simulation was done with the k − ω-SST based DDES

model (Gritskevich et al. (2012)) while using ∆ from equation (2.12) rather than hmax (results

not shown here). That was found to produce eddies after the step, which suggests that the

definition of ∆ plays an important role. However, the Gritskevich et al. model might addition-

ally require some recalibration for a different length scale definition, which is not our present

purpose.

2.3.3 Flow over 2D periodic hills

This case consists of flow separation from a smooth surface unlike the backward-facing step.

The geometry and flow conditions are described in the LES setup of Froehlich et al. (2005).

The computational domain is 9H along the streamwise direction and 4.5H along the spanwise

direction, where H is the hill height. The Reynolds number based on the hill height H and

the bulk velocity measured at the crest of the hill is 10, 595. Periodic boundary conditions are

specified along streamwise and spanwise directions, and the no-slip condition is imposed on

the top and bottom walls. The mesh used for the simulation consists of 1.5 million cells. The

cell spacing is uniform in both the streamwise and spanwise directions. A maximum local CFL

number < 0.5 was maintained over the entire domain.

Results from the simulation are compared with the LES data of Froehlich et al. (2005). The

skin-friction distribution along the bottom wall, and normalized mean velocity and fluctuation

profiles are shown in fig. 2.12a, 2.12b and 2.12c respectively. Overall, the agreement with the

LES data is quite good. An exception occurs very near x = 0, where the present Cf is higher

than the data. This local discrepancy might be attributable to the uniform cell spacing that

we used in the streamwise direction: in a recent LES study, Breuer et al. (2009) suggests using

a finer streamwise spacing near the hill crests, relative to the cell spacing at the trough.
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Figure 2.13: Atomizer geometry. Swirl is created by angled entrance slots near the center; slots
at the side inject air without swirl.
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Figure 2.14: Contour of fd obtained with the current DDES model. Model is in RANS mode
near walls, and in LES mode away from walls.

2.3.4 Flow through an air blast atomizer

As an instance of the type of geometries commonly encountered in practical engineering

applications, we consider the air pathways through a pure air-blast fuel injector for jet engines.

The atomizer geometry is that of Pack et al. (2013). The nozzle is shown in fig. (2.13). A

coaxial jet is created with a swirling central stream and a non-swirling outer stream. 40% of

the flow goes through the angled guide vanes at the center, while 60% enters through slots near

the outer radius. The flow downstream is a co-axial jet with a swirling core.

This case provides a complex, three-dimensional geometry to test the overall robustness

of the current DDES model. It provides many complex flow characteristics, including abrupt

flow separations and wakes, swirl-stabilized recirculation zones, and regions of high shear with

eddying structures.

Pack et al. (2013) compared PIV measurements of air flow through the atomizer to RANS

predictions of the k − ω SST and the RNG k − ǫ models. The flow fields predicted by these

models were in reasonable agreement with the data, but closer comparisons are desired.

For the present simulations, an unstructured, 12 million cell mesh was created, with the

extent of the computational domain as in Pack et al. (2013). The mesh is primarily hexahe-

dral. Grid points were clustered within and immediately following the nozzle passages, with
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Figure 2.15: Iso-surface of Q-contours colored by velocity magnitude, comparing dynamic
Smagorinsky LES (left) and current DDES (right).

256 points along the circumference of the nozzle. CFD simulations were carried out using the

current DDES model, the standard Smagorinsky LES model (with Van Driest damping) and

the dynamic Smagorinsky LES model (Lilly (1992)), as implemented by Jeyapaul (2011). The

flow configuration here corresponds to the 4% ∆P pressure configuration in Pack et al. (2013).

Figure 2.14 shows the variation of fd along a central plane. fd = 1 immediately after

the flow exits the nozzle, which allows the model to switch to LES, and subsequently generate

unsteady flow content. Figure (2.15) consists of Q-surfaces colored by mean velocity magnitude

comparing dynamic Smagorinsky LES to DDES. These images show how the DDES is producing

as much small scale structure as an LES on the same grid. A plenum of low speed air feeds the

nozzle from the top of the image shown in fig. 2.15. Within the internal passages of the nozzle,

where the nearby walls influence the flow, the DES model is in RANS mode. In the jet, it is in

eddy simulation mode.

The swirler vane passages imprint lobes on the velocity field, that rotate with downstream

distance, due to the swirl. Fig. (2.16) illustrates this by Q contours of the steady, RANS

solution. The lobes can be seen at the left side of the figure, about at the radius of the nozzle.
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Figure 2.16: Swirling jet portrayed by Q-contours of the RANS computation.

Figure 2.17: Contours of velocity magnitude along the axial plane of the atomizer. Left to
right: PIV, current DDES, Smagorinsky LES, dynamic Smagorinsky and k − ω SST RANS.
(Top of the PIV plane is within 1mm from atomizer tip)

A Q surface at larger radius swirls around the downstream jet. It has been cut to create this

view, but it encircles the entire central contour.

Fig. (2.17) shows an axial slice through center plane of the nozzle. It extends from 1mm

to 51mm below the tip. The PIV measurements at left are followed by the current DDES,

Smagorinsky LES, the dynamic Smagorinsky model, and the SST RANS model. It is interesting

to note that the DDES and dynamic Smagorinsky models actually seem to be closer to the

PIV data than the Smagorinsky LES model; the high velocity contours extend further from

the nozzle and are in better agreement with the PIV contours.

In this view the steady RANS prediction is quite good. In fig. (2.18) it will be seen to be a

bit too diffusive.

Fig. (2.18) is a cross section perpendicular to the nozzle axis, located 12.5mm downstream

of the nozzle exit. The PIV contours contain 8 lobes which correspond to the 8 slots of the
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Figure 2.18: Contours of velocity magnitude along a radial plane located 12.5mm from the tip
of the atomizer. Left to right : PIV, current DDES, Smagorinsky LES, dynamic Smagorinsky
and k − ω SST RANS.

outer air passages. The velocity contours predicted by RANS show the lobes are dissipated,

while the LES and DES results resolve them. However, the maximum velocity contour level for

the Smagorinsky LES is noticeably lower than the PIV. The DDES and dynamic Smagorinsky

are producing about the same maximum velocity as the PIV.

In some cases RANS shows 9 or 10 lobes, instead of 8, which incorrectly corresponds to the

10 slots of the inner air swirler – or a combination of the inner and outer air passages.

Figure 2.19 shows the velocity profiles computed for the different CFD simulations, compared

with the PIV data. Clearly, the Smagorinsky LES predicts a lower velocity than DDES or

dynamic Smagorinsky (fig. 2.19a). Table 1 shows the computed mass flow rates for the PIV

Table 2.1: Measured mass flow rates for PIV and CFD simulations

ṁ (kg/s) Error %

PIV 0.010422

DDES 0.010267 1.49

Smagorinsky LES 0.008456 18.9

dynamic Smagorinsky 0.010119 2.9

k − ω SST RANS 0.01022 1.9

and all the CFD simulations. The Smagorinsky LES produces a significantly lower mass flow,

leading to the lower velocity predictions seen in figure 2.19. The poor prediction by Smagorin-

sky LES is likely an indirect effect of coarseness of the mesh in the internal passages, and the

validity of the Van Driest damping function in these regions.
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Figure 2.19: Velocity profiles along a radial plane 12.5mm downstream of atomizer tip. Cir-
cle - PIV, solid line - current DDES, dotted line - Smagorinsky LES, dashed line - dynamic
Smagorinsky LES, dot-dashed line - k−ω SST RANS. (a) Total velocity magnitude, (b) Axial
velocity component, (c) Radial velocity component, (d) Tangential velocity component.

Although the prediction of the total velocity magnitude by DDES and dynamic Smagorin-

sky is close to the PIV data (fig. 2.19a), there is some error in the location of the peak velocity

along the radial direction. This would be primarily due to the under-prediction of the radial

velocity component (fig. 2.19c), leading to a “thicker” jet in the CFD simulations than in the

experiment.

Hence overall, the DDES results agree with data in terms of flow structure and velocity

magnitudes. Additionally, a key observation to be made here is that DDES produces results

as accurate as the dynamic Smagorinsky LES. The strength of the present DDES model is
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illustrated in this complex engineering flow, in that it has resolved the flow field more accurately

than RANS, and as accurately as the dynamic Smagorinsky LES.

2.4 Conclusion

The present approach is a variation on the DDES theme: the DDES length scale used for

the dissipative term in previous models was adopted for the ℓ2ω eddy viscosity, with the model

constant CDES being recalibrated. This led to a formulation based on limiting the production

term, rather than the original DES approach of enhancing the dissipation term. Preliminary

tests on a channel flow seem to suggest that both formulations are equivalent. The shielding

function fd from the original DDES formulation (Spalart et al. (2006)) was found to provide

adequate shielding and thus the same function was used herein. Redefining the grid dimension

∆, helps to overcome the LLM issue, without having to use any additional empirical functions

(as is used in IDDES). The current DDES model tends to dampen out fluctuations near the

RANS-LES interface, which was observed in the original DDES as well (Shur et al. (2008)). In

light of this, the current model needs to be tested on cases where flow separation is strongly

dependent on the dynamics of the incoming boundary layer.

Simulations of flows over a backward-facing step, and over periodic hills showed that the

model is capable of handling separation well. Specifically, the simulation of a flow over a

backward facing step showed that the model was capable of switching between RANS and LES

seamlessly and producing unsteady content after separation. Results obtained using the DDES

model for flow through an atomizer indicate that the model is robust enough to be applicable

to complex 3D geometries.
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3.1 Introduction

Hybrid RANS/LES models are considered to have promise for industrial CFD applications,

where the idea is to employ RANS in the near wall part of attached boundary layers, and eddy

resolving simulation in regions away from the surface. Detached Eddy Simulation (DES) falls

under this category of hybrid methods. DES was first proposed by Spalart et al. (1997) and

since then, the method has undergone considerable revision. Menter and Kuntz (2002) pointed

out that artificial Grid Induced Separation (GIS) could occur if, when the switch from RANS

to Eddy Simulation took place, the reduction of eddy viscosity was not balanced by resolved

turbulent content. This effect was termed Modeled Stress Depletion (MSD). Towards this end,

the blending functions of the k − ω SST model were used as a “shield” to prevent the model

from switching to eddy simulation within the lower part of the boundary layer. Following this,

Spalart et al. (2006) introduced a generic shielding function, applicable to any RANS model,

and the resulting formulation was termed Delayed DES (DDES) — although it might better

be called shielded DES.

Another perspective on DES is that it has an ability to function as a type of Wall-Modeled

LES (WMLES). Initial attempts to use the original DES as a WMLES formulation in a channel
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flow (Nikitin et al. (2000); Piomelli et al. (2003)) resulted in two, mismatched log-layers — one

from the RANS branch, and the other from the eddy resolving branch. This anamoly was

termed Log-Layer Mismatch (LLM) — an issue which is present in the DDES formulation as

well.

Breuer et al. (2003) noted that hmax = max(dx, dy, dz) may not be a suitable length scale to

use in the eddying regions of DES, and that using V 1/3 instead, where V is the cell volume,

produced better results. The fact that a different length scale definition is required was also

implied in a formulation termed Improved DDES (IDDES) (Shur et al. (2008)), which required

the modification of the length scale definition to be used in the eddying region. In addition

to revised length scales, more complex blending functions were introduced in order to ensure

that the model performed adequately as a WMLES formulation. The blending functions in

the IDDES formulation are responsible for allowing the LES functionality within the boundary

layer in the presence of turbulent fluctuations, provided the grid is fine enough. And along

with a modified length scale definition, they alleviate LLM seen in the channel flow. This is

the key difference between DDES and IDDES.

Yet another variation of DES, known as Zonal DES or ZDES (Deck (2012)) also employs V 1/3

(or ∆ω, which depends on the orientation of the vorticity ω as well as the local cell spacing)

in the eddying region. However, as the name would suggest, ZDES requires the user to specify

the RANS and eddying regions.

In the present article, a different variant of DDES is developed and applied to the k − ω

model (Wilcox (1993)). The motive for the present approach is to make DES more similar to

LES in the eddying region. It has been observed that LES often produces more accurate results

than DES. Hence, our objective is to make use of DES to reduce near-wall grid requirements

and, simultaneously, to make the eddy viscosity similar to the Smagorinsky formula far from

the surface.

Rather than utilizing the length scale in the dissipation term of the k-equation, it is used

to define the subgrid eddy viscosity, which is then used to define the production term. This

definition of the eddy viscosity makes it a function of the length scale, similar to the definition
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used for the subgrid eddy viscosity in the Smagorinsky model. This definition additionally pro-

vides a method to estimate the value of the model constant by comparing it to the Smagorinsky

eddy viscosity formulation. Hence the model can be viewed as a Smagorinsky DES model with

k − ω as the underlying RANS model.

Additionally, the length scale is redefined to ameliorate the issue of LLM without requiring

the blending functions of IDDES. The absence of any blending functions in the current for-

mulation would indicate that the near wall behaviour of the current model is more similar to

DDES than IDDES. The open source code OpenFOAM was used for all the present computer

simulations. Gaussian finite volume integration with central differencing for interpolation, was

selected for spatial discretization of equations. Time integration was by the 2nd order, back-

ward difference method. The resulting matrix system was solved using the Pre-conditioned

Bi-conjugate gradient algorithm, with the simplified, diagonal-based, incomplete-LU precondi-

tioner. Solution for the matrix system at each time step was obtained by solving iteratively,

by specifying an appropriate tolerance for the residual norm.

3.2 Model Formulation

The original DDES formulation of Spalart et al. (2006) introduces a shielding function fd

defined as

fd = 1− tanh ([Cd1rd]
Cd2), Cd1 = 8, Cd2 = 3,

rd =
k/ω + ν

κ2d2w
√

Ui,jUi,j

,
(3.1)

where k/ω is the RANS eddy viscosity, ν the molecular viscosity, κ the von Kármán constant,

dw the distance to the wall, and Ui,j is the velocity gradient tensor. fd is used to define the

DDES length scale

lDDES = lRANS − fdmax(0, lRANS − lLES), (3.2)

lRANS =

√
k

ω
, (3.3)

lLES = CDES∆. (3.4)
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The eddy viscosity is defined in terms of the length scale as

νT = l2DDESω. (3.5)

fd = 0 gives νT = k/ω and the model operates in RANS mode. fd = 1 and lLES < lRANS gives

νT = (CDES∆)2ω and the model is fully in eddy simulation mode.

This definition of νT is used in the turbulent kinetic energy production term, leaving all the

other terms unaltered.

Dk

Dt
= 2νT |S|2 − Cµkω +∇ · [(ν + σk(k/ω))∇k], (3.6)

Dω

Dt
= 2Cω1|S|2 − Cω2ω

2 +∇ · [(ν + σω(k/ω))∇ω]. (3.7)

The standard constants are invoked,

Cµ = 0.09, σk = 0.5, σω = 0.5,

Cω1 = 5/9, Cω2 = 3/40.

Dropping the transport terms in the ω equation yields

ω2 =
2Cω1

Cω2
|S|2 = 400

27
|S|2.

Then equation (3.5) becomes

νT = (CDES∆)2
20

3
√
3

√
|S|2.

The constant CDES can be estimated by equating this to (Cs∆)2
√

2|S|2, which is the eddy

viscosity formulation used in the Smagorinsky LES model. Using Cs ≈ 0.2 yields CDES ≈ 0.12.

This value of CDES was found to be satisfactory in validation studies.

In the original DDES formulation

∆ = hmax ≡ max[∆x,∆y,∆z].

We have found that the LLM issue is alleviated by redefining ∆ as

∆ = fdV
1/3 + (1− fd)hmax, (3.8)
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where V is the cell volume. In the eddy simulation region fd = 1 and this gives V 1/3 — as

is used in LES. Switching from hmax near the wall to V 1/3 farther out reduces ℓDDES and

hence the eddy viscosity. That allows the resolved eddies to develop at small scales. This is

the definition of ∆ used for all the cases presented herein.

3.3 Test Cases

3.3.1 Channel flow
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(a) Non-dimensionalized mean velocity profiles
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Figure 3.1: Dashed line - ∆ = hmax; Solid line - ∆ = fdV
1/3 + (1 − fd)hmax; H - channel

half-width

As expected, using ∆ = hmax shows the LLM issue (fig 3.1a). However, using equation

(3.8) helps to alleviate the LLM and yields a velocity profile consistent with the RANS results.

Additionally, as shown in fig (3.1b) a larger component of the reynolds stress is resolved by

using equation (3.8).

3.3.2 Flow over a backward facing step

This is a key case since the model must be capable of immediately switching from RANS

branch in the attached boundary layer pre-step to LES branch in the separated region post-

step, which was found to be the case for the current DDES model. The experimental setup of

Vogel and Eaton (1985) was simulated here. The mesh used had 1.1 million cells with 40 cells



www.manaraa.com

55

Figure 3.2: Iso-surface of Q-criterion = 2500[s−2]

spaced uniformly along the spanwise direction. The unsteady flowfield after the flow separates

from the step is apparent in figure 3.2 which shows the Q-criterion. Distribution of the
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Figure 3.3: Post-step Cf × 1000 distribution along the bottom wall

post-step skin-friction coefficient along the bottom wall (fig. 3.3) shows very good agreement

with the experimental data.

3.3.3 Flow over 2D periodic hills

This case consists of flow separation from a smooth surface unlike the backward-facing step.

The geometry and flow configuration is as described by the LES setup of Froehlich et al. (2005).

The computed skin-friction along the bottom wall has been compared with the LES data (fig

3.4). Overall the agreement is quite good except near the inlet where Cf has been slightly

overpredicted. This can be attributed to the uniform grid spacing used in the mesh. A more

recent LES study by Breuer et al. (2009) suggests using a finer spacing near the hill crests

relative to the spacing near the troughs.
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Figure 3.4: Cf × 1000 distribution along the bottom wall

3.3.4 Flow through an air blast atomizer

The flow through a pure air-blast fuel injector is an instance of the type of geometries

commonly encountered in practical engineering applications.

The geometry is described by Pack et al. (2013), where PIV measurements of air flow

through the atomizer are compared to RANS predictions (k − ω SST and RNG k − ǫ). The

flow fields predicted by these models were in reasonable agreement with the data, but closer

comparisons are desired.

For the present simulations, an unstructured, 12 million cell mesh was created.The mesh is

primarily hexahedral. Grid points were clustered within and immediately following the nozzle

passages, with 256 points along the circumference of the nozzle. CFD simulations were carried

out using the current DDES model, the standard Smagorinsky LES model (with Van Driest

damping) and the dynamic Smagorinsky LES model (Lilly (1992)), as implemented by Jeyapaul

(2011). The flow configuration here corresponds to the 4% ∆P pressure configuration in Pack

et al. (2013).

Fig (3.6) compares contours of the mean velocity magnitude obtained using both PIV and

the current DDES model along an axial slice through the center plane of the nozzle (extending

from 1mm to 51mm below the atomizer tip), while fig (3.7) shows the corresponding com-

parison along a radial plane located 12.5mm below the atomizer tip. The DDES model is able

to properly resolve the 8 lobes (corresponding to 8 slots of air passages). This illustrates the

overall robustness of the current DDES model.

Figure 3.8 shows the velocity profiles computed for the different CFD simulations, com-
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Figure 3.5: Iso-surface of Q-contours colored by velocity magnitude, comparing dynamic
Smagorinsky LES (left) and current DDES (right).

pared with the PIV data. Clearly, the Smagorinsky LES predicts a lower velocity than DDES

or dynamic Smagorinsky (fig. 3.8a). Table 1 shows the computed mass flow rates for the PIV

Table 3.1: Measured mass flow rates for PIV and CFD simulations

ṁ (kg/s) Error %

PIV 0.010422

DDES 0.010267 1.49

Smagorinsky LES 0.008456 18.9

dynamic Smagorinsky 0.010119 2.9

k − ω SST RANS 0.01022 1.9

and all the CFD simulations. The Smagorinsky LES produces a significantly lower mass flow,

leading to the lower velocity predictions seen in figure 3.8. The poor prediction by Smagorin-

sky LES is likely an indirect effect of coarseness of the mesh in the internal passages, and the

validity of the Van Driest damping function in these regions.
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Figure 3.6: Contours of velocity magnitude along the axial plane of the atomizer obtained using
PIV (left) and current DDES (right). (Top of the PIV plane is within 1mm from atomizer tip)

Figure 3.7: Contours of velocity magnitude along a radial plane located 12.5mm from the tip
of the atomizer. Left - PIV, right - current DDES.

Although the prediction of the total velocity magnitude by DDES and dynamic Smagorin-

sky is close to the PIV data (fig. 3.8a), there is some error in the location of the peak velocity

along the radial direction. This would be primarily due to the under-prediction of the radial

velocity component (fig. 3.8c), leading to a “thicker” jet in the CFD simulations than in the

experiment.

Hence overall, the DDES results agree with data in terms of flow structure and velocity mag-

nitudes.

3.4 Implementation of Dynamic Procedure

For all the cases presented thus far, the current model formulation is able to produce results

with adequate accuracy. It is well-known that the value of the Smagorinsky constant Cs varies
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Figure 3.8: Velocity profiles along a radial plane 12.5mm downstream of atomizer tip. Cir-
cle - PIV, solid line - current DDES, dotted line - Smagorinsky LES, dashed line - dynamic
Smagorinsky LES, dot-dashed line - k−ω SST RANS. (a) Total velocity magnitude, (b) Axial
velocity component, (c) Radial velocity component, (d) Tangential velocity component.

from case to case (Germano et al. (1991)). This motivated the formulation of a dynamic

procedure to compute Cs (Lilly (1992)). Since the current model constant CDES is based on

Cs, it is likely that the same weakness was also inherited, wherein different CDES values might

produce more accurate results for different cases. However, given the similarity of the current

formulation to the Smagorinsky model, a dynamic procedure similar to that of Lilly (1992) can

be implemented. This implementation will be shown in the next section, followed by results

from a test case to highlight the improved accuracy obtained using the dynamic procedure.
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3.4.1 Model formulation

The dynamic procedure of Lilly (1992) computes the value of Cs to be used in the Smagorin-

sky subgrid viscosity formula

νSGS = (Cs∆)2|S|.

Likewise, the dynamic procedure can be used to compute the value of CDES to be used in the

eddy viscosity formula in the current model

νT = (CDES∆)2ω.

This leads to

Mij = ∆̂2ω̂Ŝij −∆2ω̂Sij , ∆̂/∆ = 2, (3.9)

⇒ C2
DES = 0.5(LijMij/M

2
ij). (3.10)

The definitions of Lij and Mij (except for using a different formulation for the eddy viscosity)

are same as in Lilly (1992). The test filter is an average over neighboring cells, as is available

in OpenFoam.

The value of the computed constant can become locally negative — this problem exists in

LES as well. For our simulations we clipped CDES to zero. So eqn. (3.10) is implemented as

C2
DES = max(0.5(LijMij/M

2
ij), 0). (3.11)

For DES, there is an additional issue related to the near-wall RANS region. Based on

the model formulation described thus far, it would seem that the extent of the RANS region

would remain unaffected since the shielding function fd would make the model to follow RANS

behaviour. However, fd is a function of k (equations 3.1), which in turn depends on CDES (due

to its appearance in the production term of the k equation).

This is highlighted in figure 3.9a which shows fd profiles obtained from 2 simulations of

channel flow using our original DDES model, with different values of CDES. We observe that

the extent of the shielded region reduces when CDES is reduced, which stems from the reduced

production of k. This means that on a coarse mesh, the spuriously low values of CDES returned



www.manaraa.com

61

1 10 100 1000

y
+

0

0.2

0.4

0.6

0.8

1

f d
C

DES
 = 0.12

C
DES

 = 0.06

(a)

1 10 100 1000

y
+

0

5

10

15

20

25

30

U
+

dynamic DDES
RANS

0

0.2

0.4

0.6

0.8

1

f d

f
d

(b)

Figure 3.9: (a) Extent of the shielded region for different values of CDES in channel flow
(Reτ = 4000). (b) U+ and fd profiles obtained with dynamic procedure and clipping, but no
check for mesh quality

by formula (3.11) would lead to a drastic reduction in the extent of the RANS region, leading

to incorrect predictions of near-wall properties such as the wall shear stress, and subsequently,

the mean velocity. This behaviour is highlighted in figure 3.9b, which shows profiles of fd

and U+ obtained in a channel flow simulation using the dynamically evaluated constant CDES

(from equation 3.11). The mesh used here has a non-dimensional cell spacing of ∆x+ = 400

and ∆z+ = 200 with ∆y+ < 1 at the wall. For the same grid and flow conditions, using the

original DDES model with constant CDES was able to produce a good estimate for the mean

velocity profile (Reddy et al. (2014)). Hence it is quite clear that using the dynamic procedure

on coarse meshes can actually prove to be detrimental.

To ensure that the extent of the RANS region is not affected by the dynamically computed

model constant, a simple albeit arbitrary modification was made as shown below:

CDES = C0
DES + (Cdyn −C0

DES)max(0, 10(fd − 0.9)), (3.12)

C2
dyn = max(0.5(LijMij/M

2
ij), 0),where (3.13)

C0
DES = 0.12.

The dynamically computed constant is now referred to as C2
dyn as in equation (3.13). Instead

of using it directly in the model, it is used in equation (3.12) to obtain the final local value of
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CDES to be used. For fd < 0.9, equation (3.12) yields CDES = C0
DES and the model functions

as the original DDES model. For fd = 1, CDES = Cdyn and the model starts using the dynamic

procedure. Hence equation (3.12) ensures that the model is in RANS mode in the near-wall

regions, and the dynamic procedure is active only in the eddy simulation branch.

3.4.2 Test case - flow through a 3D diffuser

(a) k − ω RANS model - x/H = 15 (b) Model 1 - x/H = 15

(c) Model 2 - x/H = 15
(d) DNS (from Ohlsson et al, 2010) - x/H
= 15

Figure 3.10: Contours of normalized mean streamwise velocity Ū/Ub

This case corresponds to the “diffuser 1” case of Cherry et al. (2008). The inflow to the

diffuser is a fully developed flow with a Reynolds number of 10000 (based on the bulk velocity

Ub and duct height H at the inflow of the diffuser). The mesh and inflow boundary condition

are same as those in Jeyapaul (2011).
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Three simulations for this geometry were carried out, each corresponding to a different

turbulence model - k − ω RANS, the current DDES model with CDES = 0.12 (referred to

as “Model 1”), and the DDES model with dynamic computation of CDES as in eqn. (3.12)

(referred to as “Model 2”).

Figure 3.10 shows contours of the normalized streamwise velocity at the end of the diffuser

section (x/H = 15). The results from the RANS model (fig. 3.10a) are qualitatively incorrect,

since it predicts separation along the side wall, as opposed to DNS of Ohlsson et al. (2010)

shown in figure 3.10d, where separation occurs along the top wall. Model 1 (fig. 3.10b) however

predicts separation along the top wall (although the extent of the separated region is lesser than

in experiments or DNS). Thus Model 1 is able to produce results more accurate than RANS.

However, quantitatively more accurate results are desired. Velocity profiles and separation

contour along the centerplane obtained with Model 1 are compared with DNS data of Ohlsson

et al. (2010) in figure 3.11, which shows significant differences.

Using Model 2 for this case improves the results significantly. Separation is predicted along

the top wall (figure 3.10c), and the extent of the separated region is also more in line with

DNS data. Figure 3.12 shows profiles of streamwise velocity and a separation contour, and is

a significant improvement from Model 1 (fig. 3.11).
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Figure 3.11: Profiles of mean streamwise velocity (3Ū/Ub+x/H) and separation contour along
the midplane. Solid line - Model 1, Symbols and dashed line - DNS.
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Figure 3.12: Profiles of mean streamwise velocity (3Ū/Ub+x/H) and separation contour along
the midplane. Solid line - Model 2, Symbols and dashed line - DNS.

3.5 Conclusions

A variation of the DDES formulation was developed with modified length scales to correct

for LLM (as demonstrated for channel flow). The length scale was used to define the eddy vis-

cosity, which limits the production term (rather than the dissipation term) of the k equation.

Simulations of flows over a backward-facing step, and over periodic hills showed that the model

is capable of handling separation. Results obtained using the DDES model for flow through an

atomizer indicate that the model is robust enough to be applicable to complex 3D geometries.

Since the value of the Smagorinsky constant Cs is known to vary with flow configuration, the

value of CDES in the current model also is likely to vary. Towards this end, a dynamic procedure

similar to the dynamic Smagorinsky model was implemented to compute CDES locally on the

LES branch. Simulations of a three-dimensional diffuser suggest that the dynamic procedure

improves the accuracy of the model.

The grid must be fine enough to resolve a significant portion of the inertial range, for the

dynamic procedure to be valid. In this view, the grid requirements for the DDES model with

dynamic computation of CDES is likely more stringent than when using a constant CDES.

However, since we have the RANS branch active in the near-wall region, using a coarser near-

wall cell spacing than a typical LES grid might be sufficient. The effect of the grid resolution

on the performance of Model 2 needs to be studied further.
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CHAPTER 4. ON THE DYNAMIC COMPUTATION OF THE MODEL

CONSTANT IN DELAYED DETACHED EDDY SIMULATION

Z. Yin, K. R. Reddy, P. A. Durbin, (2015)

Physics of Fluids (1994-Present), 27(2), 025105

The current work puts forth an implementation of a dynamic procedure to locally compute

the value of the model constant CDES, as used in the eddy simulation branch of Delayed De-

tached Eddy Simulation (DDES). Former DDES formulations (Spalart et al. (2006); Gritskevich

et al. (2012)) are not conducive to the implementation of a dynamic procedure due to uncer-

tainty as to what form the eddy viscosity expression takes in the eddy simulation branch.

However, a recent, alternate formulation (Reddy et al. (2014)) casts the eddy viscosity in a

form that is similar to the Smagorinsky, LES (Large Eddy Simulation) sub-grid viscosity. The

resemblance to the Smagorinsky model allows the implementation of a dynamic procedure sim-

ilar to that of Lilly (1992) A limiting function is proposed which constrains the computed value

of CDES, depending on the fineness of the grid and on the computed solution.

4.1 Introduction

Detached eddy simulation (DES) was put forth as a method to couple Reynolds averaged

(RANS) models and eddy resolving simulation (Spalart et al. (1997)). It is an idea for using a

single turbulence model in both the RANS and the eddy simulation branches. Some fundamen-

tal issues were identified with the original formulation, such as modeled stress depletion (Menter

and Kuntz (2002)), and log-layer mismatch (Nikitin et al. (2000); Piomelli et al. (2003)). This

led to modifications such as delayed DES (DDES) (Spalart et al. (2006)) and Improved DDES

(IDDES) (Shur et al. (2008)).
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These have led to an operational methodology. The successes to date argue for further ad-

vances. A natural desire would be to employ a dynamic model on the eddy simulation branch,

analogous to the dynamic Smagorinsky model (DSM) of Lilly (1992). To some degree, this was

explored previously (Bhushan and Walters (2012); Walters et al. (2013)) by using 2 different

models — the Spalart-Allmaras RANS model and DSM — and interpolating between them.

Yet another method is the use of a hybrid-filter (Rajamani and Kim (2010)), which leads to a

set of filtered Navier-Stokes equations with additional terms. However, these are quite differ-

ent from the present approach. DES utilizes a single turbulence model throughout the whole

domain. We retain that feature. In most formulations, it is not obvious how a dynamic proce-

dure can be implemented — the primary reason being uncertainty about the form of the eddy

viscosity on the eddy simulation branch. This difficulty with DES models has been pointed out

previously (Bhushan and Walters (2012)).

The uncertainty arises because the original DES models (Spalart et al. (2006)) were based on

enhancing dissipation, using the grid spacing as the dissipation length when it became smaller

than the RANS length scale. The same approach of enhancing dissipation was followed when

DDES was adapted to the k−ω SST (Shear Stress Transport) RANS model (k is the turbulent

kinetic energy, and ω the specific dissipation rate) by Gritskevich et al. (2012). Here again, it

is not clear what the functional form of the eddy viscosity is in terms of the DDES/IDDES

length scale.

We recently put forth an alternate formulation of DDES (Reddy et al. (2014)) based on the

k−ω (or k−ω SST) RANS model, which uses the DDES length scale ℓDDES to define the eddy

viscosity as νT = ℓ2DDESω. It follows that the length scale limiter can be interpreted as limiting

the production term, rather than enhancing the dissipation term. This alternate formulation

bears a similarity to the Smagorinsky model. Thus, an a priori estimate of the model constant

CDES ≈ 0.12 was made from the Smagorinsky constant Cs. However, when the model was

calibrated by channel flow simulations, a range of values of about 0.05 . CDES . 0.15 was

found to be satisfactory.

It is known that the best value of the Smagorinsky constant Cs depends on the flow config-

uration (Germano et al. (1991)). The dynamic procedure allows it to adapt to the flow, and to
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the particular grid. This suggests that the leeway in the calibration of CDES can be exploited

in the same way. Because the eddy viscosity is specified directly in this alternate formulation

(Reddy et al. (2014)), the dynamic procedure is immediately apparent.

The model formulation will be described in Sec. 4.2. The open source code OpenFOAM

(Weller et al. (1998)) was used for all the present computer simulations. Gaussian finite volume

integration with central differencing for interpolation, was selected for spatial discretization of

equations. Time integration was by the 2nd order, backward difference method. The resulting

matrix system was solved using the Pre-conditioned Bi-conjugate gradient algorithm, with

the simplified, diagonal-based, incomplete-LU (Lower Upper) preconditioner. Solution for the

matrix system at each time step was obtained by solving iteratively, to a specified tolerance of

the residual norm.

4.2 Model Formulation

The alternate DDES formulation (Reddy et al. (2014)) is reproduced here for convenience:

ℓDDES = ℓRANS − fdmax(0, ℓRANS − ℓLES),

ℓRANS =

√
k

ω
,

ℓLES = CDES∆, (4.1)

∆ = fdV
1/3 + (1− fd)hmax, CDES = 0.12, νT = ℓ2DDESω,

where V is the cell volume, hmax = max(dx, dy, dz) is the maximum cell spacing and fd is the

DDES shielding function,

fd = 1− tanh ([8rd]
3),

rd =
k/ω + ν

κ2d2w
√
Ui,jUi,j

,
(4.2)

where ν is the kinematic viscosity, κ the Von Kármán constant, dw the wall distance and Ui,j

the velocity gradient tensor.
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Note, especially, that νT = ℓ2DDESω. This νT defines the production term of the k equation

in the k − ω RANS model (Wilcox (1993)), leaving all the other terms unaltered.

Dk

Dt
= 2νT |S|2 − Cµkω +∇ · [(ν + σk(k/ω))∇k],

Dω

Dt
= 2Cω1|S|2 − Cω2ω

2 +∇ · [(ν + σω(k/ω))∇ω].

(4.3)

The standard constants are invoked,

Cµ = 9/100, σk = 1/2, σω = 1/2, Cω1 = 5/9, Cω2 = 3/40.

For future reference, we will cite this formulation (Reddy et al. (2014)) as “Model 1”.

Thus on the eddy simulation branch (fd = 1, ℓLES < ℓRANS), we have

νT = (CDES∆)2ω, (4.4)

which is similar to the Smagorinsky sub-grid viscosity expression

νSGS = (Cs∆)2|S|. (4.5)

In LES, the dynamic procedure evaluates a local value of Cs as follows:

C2
s = 0.5

LijMij

MijMij
, (4.6)

Lij = −ûiuj+ ˆ̄ui ˆ̄uj , (4.7)

Mij = (∆̂2| ˆ̄S| ˆ̄Sij −∆2|̂S̄|S̄ij). (4.8)

The notations used in equations (4.7, 4.8) are the same as in Lilly (1992). The hat denotes

explicit, test filtering where the test filter width is twice the grid scale. The test filtering is

carried out via a spatial average of the face neighbour cells weighted by the surface area of the

common face.

It is rather apparent that for the eddy viscosity definition in (4.4), this same dynamic

procedure gives

C2
DES = 0.5

LijMij

MijMij
, (4.9)

Mij = (∆̂2 ˆ̄ω ˆ̄Sij −∆2 ̂̄ωS̄ij). (4.10)
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Figure 4.1: PSD measured in the post-separation shear layer region in the flow over a backward
facing step. fs is the sampling frequency.

Essentially, ω plays the role of the filtered rate of strain |S|. So the only change occurs in

the definition of Mij (eqn. 4.10) due to the difference in the eddy viscosity definition. In the

first of equations (4.1), CDES determines the switch from the RANS to LES length scales. By

submitting this coefficient to the dynamic procedure, the switching criterion becomes adaptive.

The dynamic procedure can yield locally negative values of C2
DES, which is not acceptable

– this problem already exists in LES. It is resolved by clipping the right side of (4.9) at 0.

Indeed, there is yet another issue, related to the mesh resolution. In order for the test

filter to be valid, a significant portion of the inertial range needs to be resolved. But the

coarse meshes that sometimes are used in DES do not capture enough of the small scales.

Figure 4.1 highlights this, where the power spectral density (PSD) of the streamwise velocity

component u obtained in the simulation of a backward facing step is shown. The coarse mesh

results in rather little inertial range and a rapid fall-off at high frequency. Then formula (4.9)

yields spuriously low values of CDES. In such circumstances, avoiding the dynamic procedure

altogether might be best. For anything but these very coarse meshes there is a good prospect

for dynamic DES. Indeed, if the mesh resolution is close to that of wall resolved LES, utilizing

the dynamic procedure might be favorable, even in the near-wall region.

For DES, there is an additional issue related to the near-wall RANS region. Based on
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Figure 4.2: (a) Extent of the shielded region for different values of CDES in channel flow
(Reτ = 4000). (b) U+ and fd profiles obtained with dynamic procedure and clipping, but no
check for mesh quality

the model formulation described thus far, it would seem that the extent of the RANS region

would remain unaffected since the shielding function fd would make the model to follow RANS

behaviour. However, fd is a function of k (via equations 4.2), which in turn depends on CDES

(due to it’s appearance in the production term of the k equation).

This is highlighted in figure 4.2a which shows fd profiles obtained from 2 simulations of

channel flow using Model 1, with different values of CDES . We observe that the extent of the

shielded region reduces when CDES is reduced, which stems from the reduced production of

k. This means that on a coarse mesh, the spuriously low values of CDES returned by formula

(4.9) would lead to a drastic reduction in the extent of the RANS region, leading to incorrect

predictions of near-wall properties such as the wall shear stress, and subsequently, the mean

velocity. This behaviour is highlighted in figure 4.2b, which shows profiles of fd and U+

obtained in a channel flow simulation using the dynamically evaluated constant CDES (from

equation 4.9). Negative values for C2
DES were clipped to zero. The mesh used here has a

non-dimensional cell spacing of ∆x+ = 400 and ∆z+ = 200 with ∆y+ < 1 at the wall. For

the same grid and flow conditions, Model 1 was able to produce a good estimate for the mean

velocity profile (Reddy et al. (2014)). Hence it is quite clear that using the dynamic procedure

on coarse meshes can actually prove to be detrimental.
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To address these caveats, we introduce a limiting function which acts as a bound on the

computed value of CDES. It is described as follows:

CDES = max(Clim, Cdyn), (4.11)

C2
dyn = max

(
0, 0.5

LijMij

MijMij

)
, (4.12)

Clim = C0
DES

[
1− tanh

(
α exp

(−βhmax

Lk

))]
, (4.13)

C0
DES = 0.12, Lk =

(
ν3

ǫ

)1/4

, α = 25, β = 0.05,

ǫ = 2(C0
DEShmax)

2ω|S|2 + Cµkω. (4.14)

Equation (4.12) is the same as equation (4.9), except that it is now clipped at 0, avoiding

negative values for C2
dyn. The right side of equation (4.9) is averaged over the face neighbor cells,

weighted by the surface area of the common face, before it is clipped. No other averaging, such

as along homogenous directions, or Lagrangian dynamic averaging (Meneveau et al. (1996)),

is performed. As will be shown, the results obtained using such an approach yield satisfactory

results, although it is possible that incorporation of some form of averaging might lead to

additional robustness.

The idea behind equation (4.13) is to gauge the mesh resolution (Speziale (1998)) and

subsequently, its suitability for invoking the dynamic procedure. The constants α and β were

calibrated via channel flow simulations with various mesh resolutions.

The right side of equation (4.14) represents the contribution to the total turbulent kinetic

energy dissipation of the sub-grid and the modeled component to ǫ. Lk is representative of the

Kolmogorov length scale. If hmax represents the size of the smallest eddies being resolved, then

hmax/Lk → 0 represents a mesh resolution where a large portion of the inertial range has been

resolved, and hmax/Lk → ∞ represents a coarse mesh where using a constant CDES might be

more suitable. That constant value has been set to 0.12. Equation (4.13) interpolates between

Clim = 0 and Clim = 0.12.

Figure 4.3 reflects this idea, where for a coarse mesh, CDES = Clim and the model and

the dynamic procedure cannot produce low values. For the other extreme, where the mesh is
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Figure 4.3: Variation of Clim with hmax/Lk

fine enough to run LES even in the near-wall regions, the dynamic procedure would be utilized

almost everywhere.

As pointed out in the Model 1 formulation (Reddy et al. (2014)), away from the wall, the

average values of ω2 and |S|2 are proportional. In the near-wall region ω increases more rapidly

than |S| as y → 0, because of its boundary condition, leading to large ǫ. Hence there will be

a thin RANS region even for a wall-resolved, LES mesh, although the extent of the RANS

region can be much smaller than that would be obtained with the native Model 1, or any other

DDES formulation. Thus the limiting function takes advantage of the fineness of the mesh, by

not imposing a mandatory, large near-wall RANS region. This behavior will be highlighted for

some test cases.

The CDES value obtained from equation (4.11) is used to evaluate ℓLES in equation (4.1),

and subsequently, νT and the turbulent kinetic energy production. This completes the new

dynamic DDES model formulation. The new model with the limiting function described above

will be referred to as “Model 2” in the remaining portions of this article.

A comment needs to be made regarding the choice for the form of equation (4.14). The

ǫ estimate is based on C0
DES and hmax, rather than νT directly. This yields a conservative

estimate, wherein a slightly larger ǫ is obtained, leading to a smaller value of Lk. That provides

a more stringent requirement on the mesh resolution needed to achieve hmax/Lk → 0. It acts

as a safeguard against invoking the dynamic procedure on relatively coarse meshes.
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4.3 Test Cases

4.3.1 Channel flow

Table 4.1: Grid resolution for channel flow cases with different Reynolds numbers

Reτ ∆x+ ∆z+

500 50 25

1200 120 60

2000 200 100

6000 600 300

Several channel flow simulations were carried out for a range of Reynolds numbers. All the

channel flow cases were simulated using Model 2 and the results obtained are compared with

DSM or k−ω RANS. For simulations with sufficient grid resolution, we expect a large portion

of the domain to utilize the dynamic procedure. The grid and the extent of the computational

domain is the same as in Reddy et al. (2014). The corresponding grid resolution in wall units

for each Reynolds number are listed in Table 4.1. In all the cases, ∆y+ < 1 for the near-wall

cells. The time step ∆t is chosen to ensure that the maximum local CFL number ≈ 0.5.

Figure 4.4 shows the non-dimensionalized velocity profiles obtained for different values of

Reτ . The results show good agreement between the dynamic DDES model (Model 2) and

DSM/RANS. The limiting value for CDES reduces to 0 for the lower Reτ cases (when the mesh

in the eddying region is fine) and retains a larger value for the higher Reτ cases (when the

mesh is coarse). For Reτ = 500, the limiting function takes advantage of the mesh and

allows the dynamic procedure to be utilized in the near wall region, with the entire log-layer

located in the eddy simulation region. However, as pointed out in Sec. 4.2, we still have a thin

RANS region close to the wall, due to ω growing more rapidly than |S| as y → 0. The large ω

results in a large ǫ, which activates the limiting function, and the RANS branch replaces the

eddy simulation branch.

The difference between the performance of Model 2 and Model 1 is highlighted in figure 4.5.

Model 1 and Model 2 data correspond to a channel flow simulation with Reτ = 500, while the

DNS data (Moser et al. (1999)) corresponds to Reτ = 590. Profiles of resolved u′
+

, v′
+

and

w′
+

are shown in figure 4.5a. The trend observed in the Model 1 predictions for this Reτ = 500
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Figure 4.4: U+ profiles for channel flow at different Reτ . The dashed curve is fd and the
dash-dot curve is CDES/0.12. Circles are RANS (same as DSM-LES). (a) Reτ = 500, (b)
Reτ = 1200, (c) Reτ = 2000, (d) Reτ = 6000

case is similar to that observed for Reτ = 2250 (Reddy et al. (2014)). This is primarily due

to the presence of a significant RANS region for Model 1 as shown in figure 4.5b, where the

shielding function fd is shown, along with k+ — the non-dimensional total turbulent kinetic

energy.

k+ = (km + kr)/u
2
τ ,

km = modeled component of k,

kr = 0.5(u′
2

+v′
2

+w′
2

) = resolved component.

Notice that the extent of the RANS region is similar for Model 1 with Reτ = 500 and Reτ =
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Figure 4.5: Circles - DNS data (Reτ = 590). Lines with ‘*’ - Model 1, Lines without ‘*’ -
Model 2. Model 1 and Model 2 data correspond to Reτ = 500. (a) Profiles of resolved u′

+

, v′
+

and w′
+

, (b) Profiles of k+ and fd

2250, despite the fine mesh for the lower Reτ . Model 2 however was able to “detect” that the

mesh has sufficient resolution to employ the dynamic procedure. This leads to lower CDES,

and subsequently, lower k and ℓLES values, resulting in a smaller shielded region. Thus the

eddy simulation branch is active over a larger region, which gives a better prediction of the

velocity fluctuations and the turbulent kinetic energy.

4.3.2 Backward facing step

The flow over a backward facing step is an excellent case to test the performance of any

hybrid RANS/LES method due to the abrupt change in flow features across the sharp edge.

The model must be capable of switching from RANS to eddy simulation at the step, where

the flow separates. The experimental setup of Vogel and Eaton (1985) was simulated. The

Reynolds number at the inflow boundary is 28, 000 based on the bulk velocity Ub and the step

height H. Simulation details such as the grid used, the boundary conditions specified and the

extent of the computational domain are the same as in Reddy et al. (2014).

Overall, a good agreement between the simulation and the experimental data is observed.

Figure 4.6 shows the normalized mean streamwise velocity profiles and rms profiles at several
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Figure 4.6: Flow over backward-facing step: Comparison with experimental data. (a) Normal-
ized Ū profiles, (b) Normalized urms profiles, (c) Post-step Cf × 1000 distribution along the
bottom wall. Profiles taken at x/H = 2.2, 3, 3.7, 4.5, 5.2, 5.9, 6.7, 7.4, 8.9. Solid lines - Model 2
results, Symbols - Experimental data (Vogel and Eaton (1985))

streamwise locations, and the variation of the skin friction co-efficient Cf along the bottom wall.

The Cf is computed from the wall shear stress obtained using a first order interpolation. The

near-wall cells have ∆y+ < 1. Since the velocity varies linearly with the wall distance within

the viscous sublayer (y+ . 5), a first order interpolation is sufficient to accurately calculate the

velocity gradient, and subsequently, the shear stress at the wall.

The grid used is relatively coarse (∆x+ ≈ 200 and ∆z+ ≈ 100 away from the step), so

we expect the limiting function to impose lower bounds on CDES. Figure 4.7 shows contours

of time-averaged Clim. We observe that almost throughout the entire eddying region, Clim >

0.06 ⇒ CDES > 0.06.

CDES hits the limiter at 0.12 where the flow separates from the step. Due to wall resolution

requirements, the cell at the separation corner has very large aspect ratio, which deviates from

typical LES grid resolution. Also, the rate of strain is large, which means that dissipation is
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Figure 4.7: Time Averaged Clim contours

high. As a result, the values of Lk are relatively low, causing the bound on the value of CDES

to be invoked.

4.3.3 Periodic hills

This case shows flow separation from a smooth surface, unlike the backward-facing step.

The geometry and flow conditions are as described in Froehlich et al. (2005). The extent of

the computational domain is 9H and 4.5H along the streamwise and spanwise directions

respectively, where H is the hill height at the crest. The Reynolds number based on the

hill height and the bulk velocity at the crest is 10, 595. The grid used has 106 × 100 × 90

points in the streamwise, wall normal and spanwise directions respectively. Periodic boundary

conditions are enforced along the streamwise and spanwise directions. The flow is driven by

a pressure gradient source term which is adjusted to sustain the required bulk velocity at the

inflow boundary. A maximum local CFL number < 0.5 is maintained throughout the entire

domain.

Figure 4.8 compares the skin friction distribution along the bottom wall, mean streamwise

velocity profiles and rms profiles from Model 2 to LES data. Overall, there is a good agreement.

Additionally, figure 4.8a also shows the Cf prediction obtained from Model 1. We notice that

Model 1 predicts a larger Cf than LES data near the inlet (x/H = 0), compared to the more

accurate prediction of Model 2. The mean and rms velocity predictions of Model 1 are however

very similar to that of Model 2 for the current grid, and hence those profiles have not been

shown in order to avoid clutter.
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Figure 4.8: Flow over 2D periodic hills: (a) Variation of the skin-friction coefficient along the
bottom wall, (b) Normalized mean velocity profiles, (c) Normalized urms profiles. Profiles taken
at x/H = 0.05, 2, 6, 8

4.3.4 3D diffuser

As an example of a 3D geometry, the flow through a 3D diffuser was simulated. The ge-

ometry and flow conditions correspond to the “diffuser 1” of Cherry et al. (2008). The grid

and boundary conditions are the same as in Jeyapaul (2011). The grid is nearly LES-quality.

Three simulations were carried out for this geometry, each corresponding to a different tur-

bulence model – the k − ω RANS model (Wilcox (1993)), Model 1 (Reddy et al. (2014)) and

Model 2 (the current dynamic DDES model).

Figure 4.9 shows contours of the time-averaged streamwise velocity component obtained

from all three simulations at the diffuser exit (x/H = 15, where H is the height of the inlet

section). The RANS result (figure 4.9, top left) is qualitatively incorrect since it predicts

separation along the side wall, as opposed to experiments (Cherry et al. (2008)) and DNS

(Ohlsson et al. (2010)) where separation is along the top wall. Model 1 does predict separation

along the top wall (figure 4.9, top right) – an improvement over RANS – but, the separation
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Figure 4.9: Contours of normalized mean streamwise velocity Ū/Ub along the diffuser exit plane
(x/H = 15). Top left: k − ω RANS model, Top right: Model 1, Bottom: Model 2

region is much thinner than the DNS data. Figure 4.10 compares the separation contours

and mean velocity profiles (at x/H = 0, 2, 6, 8, 12, 14, 15.5, 17) along the midplane obtained for

Model 1 with DNS data (Ohlsson et al. (2010)), showing the deviation of Model 1 predictions

from DNS.

Introducing the dynamic procedure improves the results appreciably. The bottom portion

of figure 4.9 shows the mean velocity contours obtained using Model 2, and the corresponding

separation contours and mean velocity profiles along the midplane are shown in figure 4.11.

The agreement with DNS data is much better than with Model 1. The dynamic DDES model
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Figure 4.11: Profiles of mean streamwise velocity (3Ū/Ub+x/H) and separation contour along
the midplane. Solid line - Model 2, Symbols and dashed line - DNS.

was able to take advantage of the grid resolution, utilizing the dynamic procedure almost

everywhere in the domain, leading to a marked improvement in the prediction.

4.3.5 Rotating channel

The flow through a fully developed rotating turbulent channel was simulated as another

illustration of the advantage of the dynamic procedure over a constant CDES. In pure RANS

mode, k − ω would require some kind of curvature correction to handle rotating flows (Arolla

and Durbin (2013)). No such corrections are used here. This means that simulations based on

Model 1 would likely be subject to errors due to the presence of a thick RANS region near the

walls.
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In the eddy-simulation region, rotation effects are captured by the Navier-Stokes equations.

Thus, we expect to get better results using Model 2 since the RANS region will be smaller,

provided the mesh is fine enough.
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Figure 4.12: Mean velocity profiles normalized with the bulk velocity Ub for rotating channel
flow at different Ro. (a) Ro = 0.1, (b) Ro = 0.5, (c) Ro = 0.98, (d) Ro = 1.5

The non-dimensional measure of rotation is the rotation number (Grundestam et al. (2008)),

Ro = 2Ωδ/Ub, where Ub is the bulk velocity, δ the channel half-width and Ω the rate of

coordinate system rotation. Four different simulations were carried out, corresponding to four

different Ro values. These simulations correspond to previous DNS studies of Grundestam

et al. (2008) (Ro = 0.98, 1.5) and Kristoffersen and Andersson (1993) (Ro = 0.1, 0.5).

In the DNS studies, a constant pressure gradient was prescribed, which forces constant

total uτ and Reτ values. The bulk velocity, Ub and Reb (Reynolds number based on the bulk
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velocity) then vary with Ro. In our simulations, Ub was specified, for each Ro, and the resulting

uτ and Reτ values were computed.

Figure 4.12 shows mean velocity profiles obtained with both Model 1 and Model 2, compared

with DNS data. Model 2 results are more in line with the data, especially near the right wall,

at higher Ro, where the turbulence is suppressed by rotation.

Due to the asymmetry in the velocity profile, there are 2 different friction velocities, uτu

and uτs, corresponding to the unstable and stable sides (Grundestam et al. (2008)). An average

friction velocity uτ is defined as

uτ = [0.5(u2τu + u2τs)]
1/2.

For the specified bulk velocity Ub, the predicted Reτ values for Model 1 and Model 2 are

Table 4.2: Predicted Reτ for different Ro values

Ro Reτ
DNS Model 1 Model 2

0.1 194 229 196

0.5 194 206 199

0.98 180 215 179

1.5 180 330 187

shown in table 4.2, along with the reference DNS values. Model 2 predicts more accurate values

for the wall shear stress than Model 1. The grid used for these cases has a non-dimensional

cell spacing ∆x+ = ∆z+ ≈ 30 for Model 2 (the corresponding numbers evaluated when using

Model 1 ≈ 50 due to the larger predicted uτ ), with ∆y+ < 1 for the near wall cells in all the

simulations. This leads to a smaller RANS region while using Model 2, and subsequently a

smaller error stemming from the absence of any curvature correction terms.

At large Ro, we observe that Model 2 starts to deviate from the DNS results, especially on

the right wall (figure 4.12d). That is the wall where rotation is stabilizing. A likely explanation

for the discrepancy is that the RANS model does not include a curvature correction. Hence,

as long as there is a thin RANS region, it cannot laminarize. Regions of negative production

were observed (Grundestam et al. (2008)) for Ro = 1.5, and that certainly cannot be captured
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by the k−ω eddy viscosity model. For lower Ro values, the predictions are in good agreement

with DNS.

4.3.6 Fundamental aero investigates the hill (FAITH) geometry

As an illustration of the model performance for a complex flow configuration, a simulation

of the flow over a 3D axisymmetric hill was carried out. The geometry is the FAITH (Bell et al.

(2012)). The variation of the hill height h with the radius r is

h = 3cos
(πr

9

)
+ 3, 0 ≤ r ≤ 9,

where r and h are in inches. The total radius of the hill is R = 9′′, with the hill height at the

centroid H = 6′′. The Reynolds number based on H is ReH = 500, 000, with a mean inflow

velocity U∞ = 50.3 m/s. More details regarding the experimental setup, and available data

can be found in Bell et al. (2012) and Husen et al. (2014).

The extent of the computational domain used is 20H × 5.3H × 8H along the streamwise,

wall normal and spanwise directions respectively. The hill is centered at x/H = z/H = 0.

These dimensions correspond to the wind tunnel test section used in the experiments. A plug

flow is specified at the inflow and the boundary layer develops along the streamwise direction.

The length of the inlet section ensures that the required boundary layer thickness is obtained

at x/H = 0 in the absence of the hill. The grid used has ≈ 3 million cells. At the hill, 130×130

cells are distributed uniformly along the streamwise and spanwise directions along it’s diameter,

with the cell spacing stretched out towards the inflow and outflow boundaries, and along the

remaining spanwise portions. The maximum value of the local CFL number ≈ 0.5.

Figure 4.13 shows simulation results obtained using Model 2. Figure 4.13a shows contours

of the magnitude of skin friction coefficient Cf over a square region around the hill (the circular

edge of the hill is the incircle of the square), and is in good agreement with experimental data

(Bell et al. (2012)). Normalized time-averaged streamwise velocity components are compared

with experimental data in figure 4.13b.

Figure 4.14 shows contours ofU, k, urms, and u′v′ along the spanwise centerplane on the lee

side of the hill. Here, k represents the total turbulent kinetic energy, which is the sum of the
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Figure 4.13: (a) Contours of magnitude of skin friction coefficient, (b) mean streamwise velocity
profiles behind the hill at x/H = 0, 0.4, 0.8, 1.2, 1.6, 2

Figure 4.14: Contours of (a) mean streamwise velocity U, (b) total turbulent kinetic energy k,
(c) urms, and (d) u′v′ in the z/H = 0 plane behind the hill
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Figure 4.15: Contours of (a) km, (b) kr, (c) fd, and (d) CDES in the z/H = 0 plane behind the
hill

modeled and resolved components (km+ kr). Overall, the trends observed in the PIV (Particle

Image Velocimetry) data (Bell et al. (2012)) are captured by the simulation. However, the peak

values of k and urms are slightly overestimated.

One possible explanation for this would be the coarseness of the mesh used — ∆x+ = ∆z+

is large (as high as 1000 in some regions, depending on the local friction velocity uτ ). The

fact that the mesh is coarse can also be inferred from figure 4.15d which shows that CDES =

C0
DES = 0.12 over the entire region behind the hill, where we observe most of the relevant

unsteady phenomena. Hence Model 2 essentially functions as Model 1 for simulations involving

very coarse meshes. Figure 4.15c shows the extent of the RANS region (fd = 0), and from

figure 4.15a, we can observe that the magnitude of the modeled turbulent kinetic energy km in

the LES region is comparable to that in the RANS region. This is another indication that the

mesh being used is coarse. Better agreement with experimental data could likely be achieved

by increasing the mesh resolution such that the dynamic procedure is employed in the eddy

simulation regions.
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4.4 Conclusion

The previously proposed, DDES formulation (Reddy et al. (2014)) opened the possibility

to develop a dynamic DDES formulation. The model constant CDES is computed locally via

a well-established procedure. This requires a test filter that captures the small scales. Coarse

grids are sometimes used for DES, and these small scales are not present. A limiting function

was introduced in order to estimate the validity of utilizing the dynamic procedure on the

given mesh. The function compares grid spacing to a Kolmogorov scale. Based on this, CDES

becomes a default value if the dynamic procedure is likely to fail. Simulations showed improved

predictions when employing the dynamic procedure, rather than using a constant CDES. That

was especially true when simulations were carried out on LES-quality meshes.

The dynamic procedure yields superior performance over the constant coefficient model for

2 reasons. The first reason is similar to the case of LES: the coefficient adapts to how well the

turbulence is resolved; if it is well resolved CDES becomes very small. The second reason is

peculiar to detached eddy simulation: using a locally computed CDES in ℓLES causes the RANS

region to become thinner when the mesh is fine. By maximizing the size of the eddy simulation

region, the dynamic DDES model is able to reduce any drawbacks in the RANS model (such

as the absence of curvature corrections while simulating rotating turbulent channel flow).

A key observation is how obvious it was to implement a dynamic procedure into our alternate

DDES formulation (Reddy et al. (2014)). That is because it was designed to be similar to the

Smagorinsky model. It is likely that other improvements/modifications made to the original

Smagorinsky formulation can also be implemented. This could lead to additional robustness of

this DES formulation, capable of handling a wide range of flow configurations.
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CHAPTER 5. CONCLUSION

5.1 Summary of Results

In Chapter 2, a different approach of constructing a DDES model was explored. The

RANS eddy viscosity formulation νT was modified such that it mimics the Smagorinsky subgrid

viscosity expression. Thus

νT = (CDES∆)2ω, (5.1)

in the eddy simulation branch. This new νT expression was then used to define the production

term of the turbulent kinetic energy equation in the k − ω RANS model, while simultaneously

being used in the momentum equation. That way, it retained its original meaning of a transfer

of energy. This is the production-limited approach.

This is different from the previous DDES approach (Spalart et al. (2006); Gritskevich et al.

(2012)), where the dissipation term was enhanced directly using ℓDDES. This can be termed

as the dissipation-limited approach. A comparison of the production-limited and dissipation-

limited approaches showed that they both produce similar results (figure 5.1). A modified

length scale definition ∆ was used to reduce the LLM observed in channel flows, without re-

sorting to the complex IDDES formulation. Overall, the model performed well for canonical

flows such as the backward-facing step and 2D periodic hills, and for complex flows such as

the atomizer, the results of which were presented in Chapter 2. The key advantage of the

production-limited approach is that an expression for the eddy viscosity in the eddy simulation

branch is readily available.
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Figure 5.1: Comparison of U+ in channel flow for production-limited and dissipation-limited
DDES: Reτ = 4000

In Chapter 3, a dynamic procedure (similar to Lilly (1992)) to compute the local value of the

model constant CDES was implemented. This was possible due to the availability of a functional

form for the eddy viscosity in terms of CDES, in the new DDES model formulation described

in Chapter 2. The resulting DDES formulation incorporated a dynamic LES model in the eddy

simulation branch — something which was not possible with previous DDES approaches.

It was shown that the results obtained using this approach were significantly more accurate

than those obtained with the original DDES model where a constant CDES is used. This was

observed in the simulation of the separated flow through a 3D diffuser. Figure 5.3 shows

the mean streamwise velocity profiles and the separation contour obtained using the DDES

model with a constant CDES. There are significant deviations in the simulation data compared

to DNS. A much better agreement was obtained by using the dynamically evaluated CDES, as

shown in figure 5.4. This was discussed in Chapter 3.

In Chapter 4 a limiting function was introduced which compared the grid scale to an

approximate Kolmogorov scale to get an estimate of the mesh quality, based on which the

CDES value computed by the dynamic procedure was clipped. The limiting function made the
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Figure 5.2: (a) Extent of the shielded region for different values of CDES in channel flow
(Reτ = 4000). (b) U+ and fd profiles obtained with dynamic procedure and clipping, but no
check for mesh quality
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Figure 5.3: Profiles of mean streamwise velocity (3Ū/Ub + x/H) and separation contour along
the spanwise midplane. Solid line - Model 1, Symbols and dashed line - DNS of Ohlsson et al.
(2010).
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Figure 5.4: Profiles of mean streamwise velocity (3Ū/Ub + x/H) and separation contour along
the spanwise midplane. Solid line - Model 2, Symbols and dashed line - DNS of Ohlsson et al.
(2010).
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Figure 5.5: U+ profiles for channel flow at different Reτ . The dashed curve is fd and the
dash-dot curve is CDES/0.12. Circles are RANS (same as DSM-LES). (a) Reτ = 500, (b)
Reτ = 1200, (c) Reτ = 2000, (d) Reτ = 6000

dynamic DDES model more robust, by improving its performance on coarser grids (which are

sometimes used in DES simulations). On coarse meshes, the model was shown to perform just

like the original DDES formulation with a constant CDES (figure 5.5d), whereas for a fine mesh,

the model extended the eddy simulation branch into the near-wall region (figure 5.5a), which

improved the accuracy of the computed solution. This can be seen in figure 5.6, which shows

profiles of the non-dimensional resolved velocity fluctuations and turbulent kinetic energy. The

automatic reduction in the extent of the RANS region on fine meshes also improved the overall

performance of the model in cases where the base RANS model is deficient, such as the flow

through a rotating channel, as shown in figure 5.7.

A key observation here is the ease with which the dynamic procedure was adapted to the

DDES formulation. This is due to the similarity of the original DDES model (in Chapter 2) to
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the Smagorinsky LES model. Hence it is quite possible that other modifications/improvements

made to the Smagorinsky LES model can also be implemented within this DES framework

leading to additional robustness.

5.2 Prospects for Future Work

The DDES formulation introduced in Chapter 2, with the dynamic approach described in

Chapter 4 was shown to performwell across several flow configurations including attached/separated

flows in simple and complex geometries for a range of Reynolds numbers. However, there are

several aspects of the model which warrant further research in order to make it applicable

to more practical engineering challenges. These research directions could involve any of the

following:

• All the cases presented in this dissertation assume an incompressible flow condition, and

the model formulation followed this. A natural direction to explore is the reformulation

of the model to handle compressible flows, especially high Mach number flows involv-

ing shock waves and shock wave - boundary layer interactions. The presence of shock

waves would lead to complications related to the numerical scheme as well — the central

difference scheme used in the dissertation is known to yield unbounded solutions in the

presence of discontinuities. A modification to the base RANS model might also be neces-

sary — Wilcox (2006) suggests using a modified k − ω RANS model which yields better

results for high Mach number flows.

• A similar line of interest is the modeling of chemically reacting flows. Combustion is a

tough challenge in turbulence modeling due to the appearance of several higher order

terms which need to be modeled to obtain closure. A good starting point for model-

ing reacting flows using DDES could be to mimic the modeling techniques used in the

compressible Smagorinsky LES model for reacting flows.

• Stratified flows can be considered a subset of compressible flows where the density vari-

ation occurs only along one direction. The study of such flows is of prime interest since
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the Earth’s atmosphere and oceans would fall under this category, with common applica-

tions being climate modeling/weather forecasting and the simulation of ocean currents.

Hence extending the applicability of the DDES model to stratified flows is a goal worth

pursuing.

• Another, more fundamental, avenue worth exploring lies in the eddy viscosity formulation

used. Here, νT was redefined to mimic the Smagorinsky subgrid viscosity. It might be

possible to define νT such that it mimics the subgrid viscosity of a different LES model.

• The Smagorinsky LES model (used in the dissertation) uses implicit filtering, i.e. the

grid acts as the filter. This means that for different grids, the computed solution would

vary significantly since the filter is also changing. This leads to issues related to grid inde-

pendence, which is present in the DES formulations (Spalart (2009)). Another approach

in LES is the use of an explicit filter, where the grid and the filter are no longer linked.

This would lead to a grid independent solution as the mesh is refined, with the subgrid

viscosity no longer being a function of the grid spacing. Just like how the Smagorinsky

subgrid viscosity was linked to the RANS eddy viscosity, it might be possible to relate

the subgrid viscosity obtained using an explicit filter as well, which could potentially lead

to a model formulation which exhibits a clear degree of grid convergence.

• A different base RANS model, other than the k − ω RANS model could also likely be

used. However, this might only help if the other RANS model has a better near-wall

behaviour than the k − ω RANS model.
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APPENDIX A. DERIVATION OF THE MEAN AND TURBULENT

KINETIC ENERGY EQUATIONS

The Mean Kinetic Energy (MKE) equation

The momentum equation describing the instantaneous velocity is

∂Ui

∂t
+

∂UiUj

∂xj
= −1

ρ

∂P

∂xi
+ ν

∂2Ui

∂x2j
. (A.1)

The corresponding Reynolds-averaged momentum equation is

∂Ui

∂t
+

∂UiUj

∂xj
= −1

ρ

∂P

∂xi
+ ν

∂2Ui

∂x2j
− ∂uiuj

∂xj
, (A.2)

where the overbar represents the mean quantities. To reiterate, Ui = Ui + ui and P = P + p,

with ui = p= 0. Multiplying equation (A.2) by Ui yields

Ui
∂Ui

∂t
+Ui

∂UiUj

∂xj
= −Ui

ρ

∂P

∂xi
+Uiν

∂2Ui

∂x2j
−Ui

∂uiuj
∂xj
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(
1

2
UiUi
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∂xj

(
1

2
UiUi

)
= −1

ρ

∂UiP

∂xi
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∂2

∂x2j

(
1

2
UiUi

)
− ν

∂Ui

∂xj

∂Ui

∂xj
− ∂Uiuiuj

∂xj
+uiuj

∂Ui

∂xj
,

⇒ DK

Dt
= uiuj

∂Ui

∂xj︸ ︷︷ ︸
A

− ν
∂Ui

∂xj

∂Ui

∂xj︸ ︷︷ ︸
B

+
∂

∂xj

(
ν
∂K

∂xj
− UiP

ρ
δij −Uiuiuj

)

︸ ︷︷ ︸
C

,

(A.3)

where K = 1
2
UiUi is the mean kinetic energy.

Term B represents the square of the mean velocity gradient tensor and is always positive.

Taking the negative sign in front into account, it represents the dissipation of the mean kinetic

energy by molecular viscosity.

Term C is a divergence term, and simply serves to redistribute the MKE without producing

or destroying it.
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Term A is of prime interest in turbulence, and its significance will be more clear after the

equation for the turbulent kinetic energy is derived.

The Turbulent Kinetic Energy (TKE) equation

An equation for the fluctuating velocity component can be derived from the instantaneous

and mean momentum equations.

Equation (A.1) - (A.2)

⇒ ∂ui
∂t

+
∂

∂xj
(UiUj −UiUj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2j

+
∂uiuj
∂xj

,

∂ui
∂t

+
∂

∂xj
(uiUj + ujUi + uiuj) = −1

ρ

∂p

∂xi
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∂2ui
∂x2j
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∂uiuj
∂xj
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+
∂uiuj
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Multiplying equation (A.4) by ui and taking Reynolds average for the entire equation yields
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Substituting k = 1
2
uiui and ui = 0, we get the final form of the TKE equation

Dk

Dt
= −uiuj
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. (A.5)

We notice that Term A in the MKE equation (A.3) and Term I in the TKE equation (A.5) are

both the same, but with opposite sign. Term I is usually positive (taking the negative sign in

front into account) and known as the Production term. This means that when Term I > 0,

then Term A < 0. Hence it represents the transfer of energy from the mean flow to the smaller

scales.

Term II: Since this term is the magnitude of the fluctuating velocity gradient tensor, it is

always positive. Hence it acts like a sink to k (due to the negative sign in front). It is known
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as the Dissipation term. It represents the conversion of mechanical energy to internal energy

(heat) via the dissipation of the small scales by viscosity. It is commonly denoted as ǫ.

Term III: This term neither produces nor dissipates energy. It simply transports energy

(since it is a divergence term) and is known as the Turbulent transport term.

Term IV: Similar to term III, this is also a divergence term and represents the transport of

k by pressure. It is the Pressure diffusion term.

Term V: This term acts in a similar manner to the viscous term in the momentum equation

and is known as the Viscous diffusion term.

In the k − ω RANS model, the production term is closed by using the Boussinesq approx-

imation, while the viscous diffusion term is already closed. However the dissipation, pressure

diffusion and turbulent transport terms all need to be modeled somehow to attain closure. In

the RANS formulation, the dissipation term is modeled as a separate term (Cµkω), while the

pressure diffusion and turbulent transport terms are combined with the viscous diffusion term

(since these 3 terms can be represented as a divergence, and hence, are similar) and modeled

using the eddy viscosity and an appropriate constant (the final term on RHS of equation 1.15).
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